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Abstract

Background: Mechanisms causing the onset and perpetuation of inflammation in se-
vere allergic patients remain unknown. Our previous studies suggested that severe
allergic inflammation is linked to platelet dysfunction.

Methods: Platelet-rich plasma (PRP) and platelet-poor plasma (PPP) samples were ob-
tained by platelet-apheresis from severe (n =7) and mild (n =10) allergic patients and
nonallergic subjects (n =9) to perform platelet lipidomics by liquid chromatography
coupled to mass spectrometry (LC-MS) and RNA-seq analysis. Significant metabolites
and transcripts were used to identify compromised biological pathways in the severe
phenotype. Platelet and inflammation-related proteins were quantified by Luminex.
Results: Platelets from severe allergic patients were characterized by high levels of
ceramides, phosphoinositols, phosphocholines, and sphingomyelins. In contrast,
they showed a decrease in eicosanoid precursor levels. Biological pathway analy-
sis performed with the significant lipids revealed the alteration of phospholipases,
calcium-dependent events, and linolenic metabolism. RNAseq confirmed mRNA over-
expression of genes related to platelet activation and arachidonic acid metabolism in
the severe phenotypes. Pathway analysis indicated the alteration of NOD, MAPK,
TLR, TNF, and IL-17 pathways in the severe phenotype. P-Selectin and IL-17AF pro-

teins were increased in the severe phenotype.

WILEY

Carmela Pablo-Torres, Elena Izquierdo, Tiak Ju Tan, Mohamed H. Shamji and Maria M. Escribese equally contributed.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2022 The Authors. Allergy published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.

Allergy. 2023;00:1-14.

wileyonlinelibrary.com/journal/all

1

85U8017 SUOWWIOD 3A1eR.D 3|qeol|dde au Aq peusenob aJe sajole O ‘88N 4O Sa|ni 10} Ariq1T8UIUQ /8|1 UO (SUOI|PUOD-PUE-SWB}/W0D A3 1M ARe.q 1)BUI|UO//SANY) SUORIPUOD PUe SWB | 8} 88S *[£202/T0/2z] U0 AriqiTauljuo A8|Im ‘20Ul aueiyooD Ag TZ9ST IR/TTTT OT/I0p/wW00 A3 im Areiq | uljuo//Sdny LWoiy papeojumoq ‘0 ‘S66686ET


www.wileyonlinelibrary.com/journal/all
https://orcid.org/0000-0003-2861-5763
https://orcid.org/0000-0002-3355-2798
https://orcid.org/0000-0001-7875-7327
https://orcid.org/0000-0002-6652-2739
https://orcid.org/0000-0002-5488-5700
https://orcid.org/0000-0003-3425-3463
mailto:﻿
https://orcid.org/0000-0001-5057-5150
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mariamarta.escribesealonso@ceu.es
mailto:mariamarta.escribesealonso@ceu.es
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fall.15621&domain=pdf&date_stamp=2023-01-12

PABLO-TORRES ET AL.

KEYWORDS

—{_Study design

Lipidomic
Severe allergy p:-?)lﬁle
n=7
Mild all A Protein
[m n=1doa HLD L> D @ quantification

Platelet
' No allergy
n=9

apheresis RNA
sequencing

Platelet activation-related gene expression

Log, (CPM)

CD40LG CD36 ALOX12 SELP PPBP ITGB3

Transcriptomics

pathway analysis Protein quantification

o =
g PR
S oE SE
7 > A=)
e =
o =

a
\\"\\&?g+«& \;\“%

Conclusions: This study demonstrates that platelet lipid, mRNA, and protein content
is different according to allergy severity. These findings suggest that platelet load is
a potential source of biomarkers and a new chance for therapeutic targets in severe

inflammatory pathologies.
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GRAPHICAL ABSTRACT

This study analyzes the lipidomic and transcriptomic profile of platelets in patients with mild and severe allergy. The lipidomic profile of
platelets form severe allergic patients shows high levels of ceramides, phosphoinositols, phosphocholines, and sphingomyelins and low levels
of arachidonic acid. Transcriptomics reveals a higher expression of platelet activation genes and the alteration of IL-17, MAPK, TLR, and NLR
pathways in the severe phenotype, which was validated by P-Selectin and IL-17 AF protein quantification.

1 | INTRODUCTION

Allergic diseases are one of the top three conditions demanding a
major effort toward prevention and control in the 21st century.!
In this context, especially severe allergic phenotypes represent a
clinical challenge. Severe allergic patients often suffer exacerba-
tions, leading to a chronic inflammatory status that induces irre-
versible damage on the epithelial barrier and lead to an increase of
immune cell infiltrated. Likewise, these patients display systemic
alterations in their glucose, sphingolipid, and lysophospholipid
metabolism.>* Severe allergic patients generally do not respond
to available therapies like high doses of corticosteroids, immuno-
therapy, or even biological drugs.3’5 Consequently, patients with
a severe phenotype present a poor quality of life, display several
comorbidities, and undergo numerous hospital admissions along
the years.®” This is not the case for patients with a mild/moder-
ate allergic phenotype, who are able to control the inflammatory
response and respond to treatment. Currently, we still do not
know the mechanisms underlying the acquisition and maintenance
of inflammatory severe phenotypes. Answering this question
would contribute to identify novel biomarkers essential for the

stratification of patients and to provide novel therapeutic targets
for personalized interventions that could prevent the evolution of
inflammation to a chronic state.

We have previously indicated that severe allergic inflammation
could be associated with the alteration of platelet functions, includ-
ing activation, adhesion, aggregation and granule secretion.® As
anucleate cells, platelets can synthesize a limited number of proteins
from their preloaded mRNA. Inflammation can alter transcriptional
landscape of platelets, as it has been reported for human platelets
during sepsis.” Several studies pointed out modifications on plate-
let functions in inflammatory diseases.'®! Platelet activation is
increased in patients with chronic obstructive pulmonary disease
(COPD) during an acute exacerbation, and it is also associated with
COVID-19 severity and mortality.>'® Moreover, increased levels of
platelet-derived mediators have been noted in peripheral blood and
bronchoalveolar lavage fluid (BALF) of asthmatic patients, suggest-
ing increased levels of platelet activation.'*

Platelet activation is associated with strong metabolic changes,
especially in lipid metabolism. In fact, newly generated lipids upon
platelet activation can modulate endothelial and immune cells
after their release.’® Previous evidence suggests the importance
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of platelet lipid signaling in other inflammatory disorders such as
sepsis.’> However, this is an unexplored field in the context of
allergy.

A current problem when working with platelets is the large
amount of blood needed for obtaining enough platelets. Therefore,
for research purposes, platelets are usually obtained from pooled
blood samples and isolated by numerous centrifugation steps fol-
lowed by CD45 depletion.* Platelet-apheresis is a technique used
for therapeutical purposes that allows the generation of platelet-rich
plasma (PRP) from a single donor. This technique grants obtaining a
high concentration of platelets without leukocyte or red blood cell
contamination,’” but is not commonly used in basic research, since it
is not always available.

Here, we analyze the lipidomic and transcriptomic profile of
platelet-apheresis isolated platelets of respiratory allergic patients
stratified according to the severity of their phenotype, in order to
decipher how platelets contribute to severe allergic inflammation.
Understanding platelet biology and their role in the onset of severe
inflammatory response will shed light into the mechanisms associ-
ated with severe allergic phenotypes and provide novel opportuni-

ties for a personalized therapeutic approach.

2 | METHODS
2.1 | Patients

Twenty-six individuals (aged 18-55) were recruited between
October 2018 and February 2021 (Table 1). Sample collection
from patients was performed out of the pollen season, from
October to February, except from M-7 whose PRP was col-
lected in June. The protocol was approved by the Committees
of Research and Ethics from the Hospital Universitario Puerta
de Hierro Majadahonda (HUPHM), and written informed consent
was obtained from all subjects. Nine subjects were nonallergic,
proven by Skin Prick Test (SPT), and used as controls. The remain-
ing subjects were allergic patients recruited from HUPHM Allergy
Service. Inclusion criteria for allergic patients were clinical his-
tory of allergy to aeroallergens proven by SPT. Allergic patients
were stratified by severity in mild and severe groups according
to GINA (Global Initiative for Asthma) guidelines. Severe patients
(GINA Step 5) met at least one of the following criteria: (1) Poor
asthma control assessed by ACT (asthma control test)<20 or
ACQ (asthma control questionnaire) > 1.5; (2) Two or more severe
exacerbations/ two or more glucocorticosteroid cycles of more
than 3days each (along the previous year); (3) one or more hos-
pitalizations for a severe exacerbation (in the previous year). The
rest of patients belonged to GINA steps 3-4 and were included in
the mild group. Daily dose of corticosteroid usage for mild and se-
vere patients is shown in Table S7. Patients younger than 18 years
old with concomitant inflammatory diseases, cancer, or hemato-

logical diseases were excluded.

2.2 | Sample collection and processing

Platelet-apheresis was performed in the apheresis unit (hematology
department) of HUPHM. Trima Accel machine (Terumo BCT) was set
to obtaining PRP (85 ml) and platelet-poor plasma (PPP) (50 ml) sam-
ples using anticoagulant citrate dextrose solution A (ACD-A). Full
descriptions of sample collection and characteristics are available in
Appendix S1.

2.3 | Metabolomic analysis

PPP and PRP samples (Table S1) were measured using liquid
chromatography coupled to mass spectrometry (LC-MS) with a
quadrupole-time of flight (Q-TOF) analyzer (Agilent series 6520).
Full descriptions of sample preparation, instrumental descrip-
tion, data treatment, and metabolites identification are available in
Appendix S1. Physicochemical properties and analytical parameters
of identified metabolites are shown in Table S9.

2.4 | Transcriptomic analysis

Platelet RNA was obtained as previously described.*® Briefly, thawed
platelet RNA samples from control, mild, and severe individuals
(n = 3) were processed for DNA contamination using the DNasel
(Thermofisher), ribo-depleted and then immediately processed for
library preparation (Table S1). Full process description is available in
Appendix S1.

2.5 | Luminex

A customized panel of six proteins, including P-selectin, interleukin-
17AF (IL-17AF), platelet-derived growth factor g (PDGFfp), hepat-
ocyte growth factor (HGF), vascular endothelial growth factor A
(VEGFA), and MCP1 (monocyte chemoattractant protein-1) from
thawed PPP and PRP samples of control (n = 6), mild (n = 6), and
severe (n = 4) subjects, was measured using Luminex technology
(Thermo Fisher Scientific) (Table S1). Full process description is avail-
able in Appendix S1.

2.6 | Statistics

Frequency of categorical patient variables was calculated and ana-
lyzed by Fisher's exact test and Chi-squared test. Mean and 95%
confidence interval were calculated for continuous variables and
analyzed with Mann-Whitney U test and Kruskal-Wallis test.
Statistical significance was set at 95% level (p <.05).

Multivariate analysis was performed using SIMCA P+14.0
(Umetrics, Umea, Sweden). Principal component analysis (PCA) was
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TABLE 1 Patients' clinical information

Control group (n = 9)

Characteristics Mean (95% ClI) or Freq (%)

Demographics (allergy service HUPH)
Gender (male/female)® 2(22.2%)/7 (77.8%)
AgeP 31(26.34, 35.66)
Smoking (yes/no)? 1(11.1%)/8 (88.9%)
Onset age©
Reactions (RC/RC+AS)
SPT (yes/no)d
Olive
Grass
Cupressus arizonica
Platanus
Cynodon
Weeds
Fraxinus
Profilin
Alternaria
Dpt
Dfar
Cat
Dog
FVC! (280%/<80%)
FEV1Y (280%/<80%)
PLTs (x10°/L)° 238.1(189.3, 286.98.3)
WBC (x107/L)° 6,3(5.54,7.111)
PRP hemogram (transfusion unit HUPH)
MPV (fL)° 9.12(8.67,9.57)
PLTs (x10°/L)° 1006 (777, 1235)

Mild group (n = 10)

Severe group (n =7)

p-value
3(30%)/7 (70%) 0(0%)/7 (100%) .2915
33.70(27.61, 39.79) 36.43(25.61, 47.25) .5110
2(20%)/8 (80%) 0(0%)/7 (100%) 4457
15.80(9.280, 22.32) 17.29 (9.970, 24.60) 6674
2(20%)/8 (80%) 0(0%)/7 (100%) 4853
10(100%)/0 (0%) 3 (42.86%)/4 (57.14%) .0147*
10(100%)/0 (0%) 4 (57.14%)/3 (42.86%) .0515
7 (70%)/3 (30%) 6 (85.71%)/1 (14.29%) .6029
6 (60%)/4 (40%) 1(14.28%)/6 (85.71%) 134
6 (60%)/4 (40%) 3 (42.86%)/4 (57.14%) .6372
7 (70%)/3 (30%) 2(28.57%)/5 (71.43%) 1534
2 (20%)/8 (80%) 1(14.28%)/6 (85.71%) >.9999
2 (20%)/8 (80%) 1(14.28%)/6 (85.71%) >.9999
2 (20%)/8 (80%) 0(0%)/7 (100%) 4853
1(10%)/9 (90%) 4 (57.14%)/3 (42.86%) .1007
2 (20%)/8 (80%) 4 (57.14%)/3 (42.86%) 1618
5(50%)/5 (50%) 3 (42.86%)/4 (57.14%) >.9999
1(10%)/9 (90%) 4 (57.14%)/3 (42.86%) .1007
6 (60%)/0 (0%) 2 (28.57%) /5 (71.43%%) .021*
6 (60%)/0 (0%) 2(28.57%) /5 (71.43%%) .021*
263.2(233.6,292.8) 271.7 (229.1, 314.3) .2984
6.955 (5.622, 8.288) 7.057 (5.126, 8.989) 6724
9.22(8.77,9.66) 9.21(8.60, 9.82) 9237
1189 (993.7, 1385) 1129 (917.0, 1341) 4815

Abbreviations: AS, asthma; Cl, confidence interval; Dfar, dermatophagoides farinae; Dpt, dermatophagoides pteronyssinus; FEV1, first second of
forced respiration; Freq, frequency; FVC, forced vital capacity; MPV, mean platelet volume; PLTs, platelets; RC, rhinoconjunctivitis; SPT, skin prick

test; WBC, white blood cells.
* indicates p-value {.05.
2Chi-square.

PKruskal-Wallis test.
‘Mann-Whitney test.
dFisher's exact test.

used to observe data patterns. Partial least-square discriminant analy-
sis models (PLS-DA) were used to observe differences between clinical
groups. The robustness of the models was evaluated by R? (explained
variance) and Q? (capability of prediction) scores. Fold change was cal-
culated for all metabolites in every pairwise comparisons, and those
metabolites whose fold change was within the range 0.80-1.20 were
excluded for univariant statistics. Univariant statistics to identify po-
tential biomarkers was performed using Matlab R2015a (Mathworks)
by nonparametric Mann-Whitney U test and calculating Benjamini-
Hochberg p value (PBH) (Table S8). As this is an observational study,
statistical significance was set at 95% level (p <.05) corresponding with
PBH <0.35. This allows to find more potential biomarkers, although

validation in further studies is needed to ensure that the resulting
biomarkers can properly classify the patients. Significative metabo-
lites obtained by univariant statistics were used for heatmaps and hi-
erarchical clustering, using Euclidean distance measure as clustering
parameter with RStudiol.4. IMPaLA version 13 was used for the en-
richment pathway analysis.

Protein concentration was calculated interpolating Luminex
fluorescence values using a Log5P calibration curve constructed
with known concentration standards. Differences in protein con-
centration between groups were studied with ANOVA after per-
forming a normality test. A p-value lower than .05 was considered
significant.
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3 | RESULTS
3.1 | Patient classification

Clinical history of all the subjects was thoroughly analyzed. There
were no differences related to sex, age, smoking status, or onset
age among the groups (p >.05) (Table 1). All severe patients (n = 7)
presented rhinoconjunctivitis and asthma, as well as most of mild
patients (80%). Patients did not show differences regarding their
sensitization profile, aside from olive pollen (p <.05), in which case
all mild patients presented sensitization while only three severe
patients were sensitized. Forced vital capacity (FVC) and forced
expiratory volume in 1s (FEV1) showed statistically significant
differences between mild and severe groups, finding pathologi-
cal levels (<80%) of these parameters in most severe patients.
Whole-blood hemograms showed no differences regarding plate-
let and white blood cell counts between experimental groups.
Hemograms of PRP revealed that platelet counts and mean plate-
let volume were not different between experimental groups.
Statistics of demographic data for each omic approach is shown
on Tables S4-Sé. Individual data of all the patients are shown in
Tables S2 and S3.

3.2 | PRP of severe allergic patients display a
particular lipidomic fingerprint

As platelet activation has been associated with changes in lipid me-
tabolism®>, the lipidomic profile of platelets obtained from respira-
tory allergic patients with different degree of severity was studied
using LC-MS. Initially, from 1855 and 767 chemical signals obtained
by LC-MS in positive and negative ionization modes, respectively,
210 and 197 complied with the quality criteria. Data quality was as-
sessed by clustering quality control (QC) measurements in a nonsu-
pervised model using PCA (Figure S1). First, we investigated whether
the lipidomic profile from PPP and PRP was different. LC-MS data in
positive mode from samples of control subjects was examined by a
PCA model, which showed a clear clustering of paired PRP and PPP
samples (Figure 1A). These results confirmed that platelets display a
particular lipid fingerprint.

To clarify whether platelet lipidome could classify patients
by inflammatory status, the PRP lipidomic data was studied by
a PCA model of the three experimental groups (Figure 1B) and
by a PLS-DA comparing two-by-two with the severe group
(Figure 1C,D). Although no clustering was observed when com-
paring the three groups in a PCA, a strong classification was ob-
served when comparisons were conducted against the severe
group (Figure 1C,D). The results confirmed that platelets from
severe allergic patients displayed a lipidomic profile that differ-
entiates them from nonallergic (R? =67.1% and Q? =33.1%) and
mild (R? =92.5% and Q? =20.3%) subjects. Next, we identified
which particular lipids were the most determinant for the differ-
ences observed between groups. Hierarchical clustering showed

that severe allergic patients were clustered when comparing
them to control and mild subjects, especially in the latter case
(Figure 2). However, light clustering was observed when com-
paring control subjects and mild patients. Therefore, the lipidic
profile from platelets of severe patients certainly differs from the
other groups.

3.3 | Identification of platelet lipids and biological
pathways altered in the severe allergic phenotype

We aimed to identify which particular lipids characterized platelets
in each distinct allergic phenotype. For this purpose, we studied
lipid abundances in every pair comparison (control vs mild, control
vs severe, and mild vs severe), in PRP against the corresponding PPP
(Figure 3A). We determined those that were only significantly dif-
ferent in PRP but not in PPP (Figure 3A, Table S8). Only one lipid
was altered in platelets when comparing control and mild group.
Nonetheless, six lipids were significantly different when compar-
ing the platelet content of the severe patients with either control
or mild group (Figure 3A). Abundances of these lipids were plot-
ted in Figure 3B. In the comparison of control vs severe, we iden-
tified PC (P-16:0/18:2), PI (18:0/20:3), arachidonic acid (C20:4), PC
(16:0/16:0), and Cer (d18:2/23:0) and Cer (d18:2/22:0), all of them
increased in the severe phenotype except from C20:4 which showed
decreased levels in the severe group (Figure 3B). Also, six lipid al-
terations exclusive of PRP were identified in mild vs severe com-
parison: PC (16:0/16:0), Cer (d18:1/16:0), SM (d18:1/24:0), LysoPC
(0:0/16:0), LysoPI (20:4/0:0), and LysoPI (18:0/0:0), all of them in-
creased in the severe phenotype (Figure 3B). We observed an in-
creasing trend along severity in the expression of PC (P-16:0/18:2),
Pl (18:0/20:3), PC (16:0/16:0), Cer (d18:2/23:0), Cer (d18:1/16:0),
and SM (d18:1/24:0). In contrast, C20:4 and LysoPC (20:4/0:0) de-
creased along severity. Of interest, LysoPls were decreased in the
mild group.

Next, we identified which biological pathways were related to
the lipid alterations found for each phenotype. The differences in
platelet-lipidic content between control and severe group revealed
the alteration of phospholipases A2 (PLA2) and C (PLAC), calcium-
dependent events, linoleic, linolenic, and arachidonic acid (AA) me-
tabolism (Figure 3C, control vs severe). In contrast, platelet lipidic
differences between mild and severe phenotypes showed alter-
ations in SM and Cer metabolism, glutathione redox reactions, trans-
port of PC and PI, and TNF (tumor necrosis factor) signaling pathway

(Figure 3C, mild vs severe).

3.4 | Severe allergic patients present a distinct
transcriptomic profile

We next questioned whether platelet transcriptome was also altered
in the severe group. We performed bulk RNA sequencing on PRP
samples (n = 3) of the three experimental groups to obtain a global
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FIGURE 1 PRP from severe allergic patients present a specific lipidomic profile. (A) PCA of LC-MS-positive mode showing differences
between PPP (triangles) and PRP (circles) of control subjects (n = 8). Data was log transformed and center scaled. Y axis represents the
percentage of variability explained by the model. X axis indicates sample injection order. Sample injection order was C-1, C-4, C-6, C-7, C-2,
C-3, C-9 and C-8 for both, PPP and PRP. (B) PCA of LC-MS-positive mode showing differences between Control (n = 8), Mild (n = 10) and
Severe (n = 7) subjects in PRP samples. Data was log transformed and center scaled. X and Y axis indicates the percentage of variability
explained by each component. (C) PLS-DA of LC-MS-positive mode showing differences between Control (n = 8) vs Severe (n = 7) in PRP
samples. X axis indicates sample injection order in each group. One component was displayed and is indicated by Y axis. (D) PLS-DA of LC-
MS-positive mode showing differences between Mild (n = 10) vs Severe (n = 7) in PRP samples. Data was log transformed and center scaled.

Two components were displayed and are represented by X and Y axis respectively.

snapshot of the platelet transcriptome. The PCA confirmed the sep-
aration of the severe cluster from the mild and control cluster, indi-
cating a unique fingerprint of the platelet transcriptome of severe
patients (Figure 4A). To further explore the specific differences as-
sociated to the severe allergic phenotype, pairwise differential gene
expression analysis was performed (Table S10). The severe allergic
group showed a greater number of differentially expressed genes
(DEGS) versus control (815 genes) and vs mild (183 genes) groups,
compared to the mild vs control (90 genes) (Figure 4C). Strikingly, a
total of 111 genes were common between the pairwise comparisons
of severe against mild and control (Figure 4B). Of the top 100 DEGs,
patients in the severe group exhibited a distinct transcriptomic sig-
nature to that of the control and mild groups as represented in the
heatmap (Figure 5). This difference was less pronounced in the mild
vs control comparison (Figure 5A). Taken together, these results sug-
gest that the platelets in the severe group are transcriptionally dis-
tinct from those of the mild and control groups.

3.5 | Platelets from severe allergic group display
inflammatory and activation features

To determine the mechanistic insights and the transcriptional dif-
ferences in platelets from severe allergic patients, an enrichment

analysis pathway was conducted. We identified inflammatory and
platelet-related pathways as the most altered in the severe vs con-
trol comparison, highlighting genes associated with IL-17, nuclear
factor kappa B (NFkB), TNF, and toll-like receptor signalling path-
ways, (Figure 6A, Table S11). Additionally, severe patients' plate-
lets were differentiated from those form mild and control subjects
in cell-cell adhesion related terms such as GAP junction (Figure 6,
Table S11). Nonetheless, the transcriptomic profile of mild patients'
platelet displayed platelet activation and focal adhesion differences
with control platelet group (Figure 6A, Table S11). These results
prompt us to specifically compare the mRNA expression levels of
genes involved in platelet activation pathways among severe, mild,
and control subjects (Figure 6B). Consistent with the lipidomic re-
sults, platelets from severe allergic patients showed increased lev-
els of platelet-activation-related genes, such as SELP (Selectin P),
PPBP (Pro-platelet basic protein), CD40LG (CD40 Ligand), and CD36
and platelet-aggregation-related genes such as ITGB3 (Integrin beta
chain beta 3). Of interest, ALOX12 (arachidonate 12-lipoxygenase),
which codifies for a lipoxygenase that participates in AA metab-
olism, was also increased in the severe group. In addition, an en-
hancement in P-selectin and IL17-AF protein levels was detected
in severe patients' platelets (Figure 6C), while the rest of the
quantified proteins did not show significant differences among
groups (Figure S2). These results suggest that additionally to the
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FIGURE 2 Metabolites differentially
detected in PRP clusterize severe allergic
patients. Hierarchical clustering was
performed with the statistically significant
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above-mentioned lipidomic fingerprint, platelets contain specific
mRNA transcripts and proteins associated with the severity grade
in allergic patients. Altogether, our data undelight the proinflamma-
tory potential of platelets in patients with more severe phenotype.

4 | DISCUSSION

Severe allergy is an heterogeneous and challenging to treat condi-
tion with a resilient impact on patient quality life and a high cost
to healthcare systems.>'?2° Severe allergic patients are commonly
not controlled with any combination of the available treatments, dis-
play several comorbidities, and, consequently, have a poor quality of
live.?2 We believe that a better understanding of the molecular and
cellular processes taking place in these patients will provide relevant
information for their appropriate stratification and therefore for the
design of novel personalized interventions.

Here, we identify a novel mechanism associated with severe al-
lergic phenotypes. We demonstrate that platelets are a source of
proinflammatory mediators that differentiate severe from mild al-
lergic patients and that reveal both new immune-regulatory mecha-
nisms and potential novel biomarkers.

In a previous work based on multiomic approaches from
peripheral-blood mononuclear cells (PBMC) samples, we found ev-
idence that platelet functions are altered on severe allergic inflam-
mation.? In fact, the role of platelets in inflammatory response was
also previously described in different disorders.???* In the present
study, we have specifically investigated the transcriptomic and lipid-
omic load of platelets obtained from allergic patients with different
grades of severity, and we have obtained a differential fingerprint
that shed light in their potential role in the regulation of the allergic
inflammatory response.

Allergic patients' severity was assessed using GINA guidelines.
Concretely, severe phenotypes belonged to GINA step 5, meaning
that patients present exacerbations and/or hospitalizations. Mild pa-
tients were classified according to GINA guidelines as step 3-4, with
controlled symptoms mainly due to corticosteroids.

Woking with platelets is a challenging task. Cell numbers are usu-
ally too low for experimental procedures and activation is a common
issue. This explains why platelets experimental approaches usually
imply sample pooling and centrifugation protocols as the election of
choice for platelet isolation.’®?> As methodological earlier, we use
platelet-apheresis for platelet isolation, a technique that allows the
generation of large amounts of PRP per donor with no leukocyte or
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red blood cell contamination.!® Therefore, we were able to obtain
high yield and pure platelet samples. In fact, this technique is usu-
ally used for clinical settings but not for research, since it requires

1,26 Moreover,

qualified personnel and infrastructure in a hospita
this approach generates both types of samples, PRP and PPP. As
we demonstrate here, the comparison between PPP and PRP allows
to detect which metabolic/transcriptomic modifications are due to
specific platelet content, considering no platelet contribution in PPP.
As we have recently shown, PRP samples contained quantifiably
levels of platelet-related mRNA and proteins, which were lower or
undetectable on the PPP.*8

Interestingly, our results do not demonstrate significant differ-
ences regarding platelet hematological parameters, such as platelec-
rit, platelet mean value, and platelet counts, between clinical groups
enrolled in the study. Therefore, the alterations found could only
be attributed to a differential platelet content of every phenotype.
Contrary to other reports that show changes in platelet counts are

associated with inflammatory status.?”2
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This study shows that platelets from severe allergic patients pre-
sented a different lipidomic and transcriptomic profile than mild al-
lergic patients and nonallergic subjects. This is in line with previous
reports from the group where, by using different models, we de-
scribed specific severe allergic features like: a unique pattern of oral

421 and a specific metabolic, transcriptomic,®

epithelial remodeling,
and proteomic® signature associated with severity.

Here, we showed that platelets from severe allergic patients
contain altered levels of proinflammatory lipids such as sphingolip-
ids (ceramides (Cer) and sphingomyelins (SM)), arachidonic acid (AA),
and lysophospholipids (LPC). These lipids have been reported to be
involved in the allergic inflammatory response.??! In this work, we
have detected an increase in Cer and SM in platelets of severe al-
lergic patients. Cer and SM belong to the family of sphingolipids,
and their importance in allergic diseases has been widely studied.?’
It is worth mentioning that we and others have previously shown
elevated sphingolipid levels in patients' sera obtained from diverse
models of allergic inflammation.®832 Cer levels have been correlated
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FIGURE 4 Distinct transcriptional signatures of platelets in severe allergics compared to mild and non-allergic individuals. (A) Principal
component (PCA) analysis of transcriptome libraries obtained from severe, mild and control groups. (B) Venn diagram depicting the number
of unigue and intersecting genes from pairwise differential gene analysis. (C) Volcano plots depicting upregulated (Log, Fold Change >0,
red) and downregulated (Log, Fold Change <0, blue) genes from each pairwise differential gene analysis. Genes are considered differentially

expressed with an unadjusted p <.05.

to asthma severity, and James et al. reported higher levels of Cer
BALF from patients suffering from severe asthma, compared with
mild asthmatic patients and healthy controls.®® In addition, an untar-
geted metabolomics analysis of serum from healthy individuals and
asthmatic patients also found that increased levels of Cer and SM
positively correlated with asthma severity.>* Interestingly, a causal
relationship between plasma levels of different subclasses of Cer,
including Cer (d18:1/16:0), and the onset of COVID-19 respiratory
distress symptoms has been inferred.>> Concordantly, we have de-
tected this specific Cer subclass increased in platelets from severe
allergic patients. It is known that Cer is implicated in platelet acti-
vation and endothelial dysfunction.?¢ Besides, inflammatory cyto-
kines, such as interferon-y, TNF-a, and interleukin-113, stimulate Cer
synthesis.36 Altogether, these data suggest that the chronic inflam-
matory condition present in severe allergic patients could enhance
Cer synthesis by platelets contributing to the maintenance of an in-
flammatory status.

Moreover, previous studies demonstrated that Cer can inter-
act directly with PLA2, stimulating AA realease.’’ In addition,
our results reveal the implication of the PLA2 and PLC pathways
and AA metabolism, all of the established processes associated

with platelet activation lead to eicosanoid release. Surprisingly,
platelets of severe allergic patients presented lower levels of AA.
Considering that AA is the precursor for eicosanoids synthesis,
these reduced levels suggest an enhanced synthesis of eicosa-
noids,® which are lipid-based signaling molecules in both innate
and adaptive immune responses.>**° Eicosanoids are known to
amplify type 2 immunity by recruitment and activation of eosin-
ophils, Th2 cells, ILC2, monocytes, DCs, and MCs.%® As they are
well-known triggers of the proinflammatory responses, eicosanoid
production by patients' platelets could also play a role in severe
allergic inflammation. In support of a stronger supply of eicosa-
noids by severe patients' platelets, our data showed that these
platelets are loaded with higher mRNA levels of the ALOX12 gene,
which encodes the lipoxygenase ALOX12. This enzyme generates
bioactive lipid mediators, including eicosanoids, and is involved
in platelet aggregation and TNF-a, MAPK, and NFkB signaling
pathways.***? Since our data also point to significant alterations
of the above-mentioned signaling pathways in severe patient's
platelets, it is tempting to hypothesize that elevated levels of
platelet-ALOX12 lead to a rise in eicosanoids that subsequently
boost inflammation on severe phenotypes. Likewise, we show
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FIGURE 5 Severe group exhibit a distinct transcriptomic signature to that of the control and mild groups. Heatmaps of the top 100 DEGs
ranked by p-value from (A) Control vs Mild, (B) Control vs Severe and (C) Mild vs Severe. Hierarchal clustering was performed using the
Euclidean distance. The Gene Specific Analysis tool was employed to identify the differentially expressed genes using Partek Flow. Each

row represents a single transcript; each column represents an individual PRP sample. Red bands indicate a higher expression level, and blue
bands indicate a lower expression level.
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FIGURE 6 Platelets from severe allergic patients present increased expression of platelet activation related transcripts and proteins. (A) Most
relevant differentially detected (p <.05) biological pathways in which statistically significant metabolites from PRP of Control vs Mild, Control vs
Severe and Mild vs Severe comparisons are involved. (B) Bar plot representation of counts per million (CPM) of significant transcripts (T-Student
test p <.05) detected. Error bars cover the interquartile range. (C) IL-17 and P-Selectin concentration measured by Luminex in PRP samples from
Control, Mild and Severe subjects (ANOVA p <.05). Abbreviation: Arg, arginine; cGMP, cyclic GMP; ECM, extracellular matrix; MAPK, mitogen-
activated protein kinase; NET, neutrophil extracellular traps; NLR, NOD-like receptor; PKG, protein kinase G; Pro, proline; TLR, toll-like receptor.
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that platelets obtained from severe patients contain higher pro-
tein levels of IL17A, a proinflammatory cytokine detected in se-
vere asthma phenotypes.43

Another important lipidomic modification found in platelets
from severe allergic phenotypes was the increase of PC (16:0/16:0)
and LPC 16:0. We must emphasized that LPC 16:0 was also found to
be augmented in PPP of severe subjects, indicating a high systemic
content of this molecule in these patients. Similarly, we and others
have previously described higher levels of LPC 16:0 in serum sam-
ples from uncontrolled asthmatic patients3 and in BALF of asthmatic
patients.** In addition, previous reports support that LPC16:0 exert
proinflammatory activities, such as eosinophil adhesion*® and mono-
cyte IL1- B secretion.*® Thus, the increase of LPC 16:0 and its pre-
cursor PC (16:0/16:0) in the PRP of severe allergic patients sustain a
role for platelets in the maintenance of chronic inflammatory injury
present in severe allergic phenotypes.

Platelets are able to release their content upon activation. When
platelets are activated, P-selectin is immediately translocated to the
plasma membrane where it acts as a receptor or ligand for its counter-
part expressed on the surface of other immune cells (PSGL-1), vital for
the initiation of the recruitment of these cells to the site of interest.
Our results showed that platelets from severe allergic patients con-
tain increased levels of P-selectin (MRNA and protein), as well as other
transcripts related to platelet activation and aggregation (PPBP, CD40,
CD36, and ITGB3), indicating that platelets are highly activated in the
severe group, as has been observed in other inflammatory diseases.?*

Our data demonstrate that platelets from severe allergic patients
are a source of inflammatory mediators that present markers of an
enhanced activation state, supporting their role as key players in the
pathophysiology of severe allergy inflammation. This observation
points out the potential role of platelets for finding novel biomarkers

and therapeutic targets for severe allergic patients.
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