
M1 BIO-INFO Nantes Université
X2BI040 2022/2023

Feuille de travaux pratiques no 1
Langage C++ et environnement

Exercice 1.1
Écrire, compiler et tester le programme C++ demandant à l’utilisateur son prénom et son nom en une seule fois et
sur la même ligne, et a�chant la phrase « Untel, votre nom comporte x lettres » où « Untel » est remplacé
par le prénom de la personne et x par le nombre de lettres de son nom.

Exercice 1.2 (Positions géographiques)
On considère le �chier texte coordonnees.txt suivant (disponible sur madoc) organisé en trois colonnes :

Ancenis 47.22 1.10
Auray 47.40 3.00
Brest 48.23 4.29
Carhaix 48.17 3.34
Chateaubriant 47.43 1.23
Chateaulin 48.12 4.06
Clisson 47.05 1.17
Concarneau 47.52 4.00

La première colonne est une chaîne de caractères désignant une ville ; la deuxième colonne est un double dési-
gnant une latitude ; la troisième colonne est un double désignant une longitude.
Dans la suite, on s’attachera à respecter les principes de la compilation séparée : toutes les fonctions de manipu-
lation de ville_ts seront dé�nies dans un �chier indépendant du �chier contenant le programme principal.

1. Dé�nir une structure ville_t composée d’un nom, d’une latitude et d’une longitude ;
2. Écrire la fonction lire_fichier() prenant en entrée un « �ux » de type ifstream sur un �chier texte

ayant la structure ci-dessus et un tableau t de ville_ts, et insérant dans t les informations relatives aux
villes apparaissant dans le �chier ;

3. Écrire la fonction chercher_par_nom() prenant en entrée un nom de ville, un tableau de ville_ts, et
retournant un pointeur sur la structure correspondante si la ville se trouve dans le tableau, ou nullptr
sinon ;

4. Écrire la fonction chercher_par_position() prenant en entrée une position (i.e. une latitude et une
longitude), un tableau de ville_ts, et retournant la structure correspondant à la ville la plus proche de
cette position. Étant donnés deux points A = (lA, LA) et B = (lB , LB), on utilisera la notion de distance
suivante entre A et B :

dist(A,B) =
√
(lA − lB)2 + (LA − LB)2 ;

5. Écrire un programme a�chant un menu o�rant à l’utilisateur la possibilité de rechercher les coordonnées
d’une ville en donnant son nom, d’a�cher le nom de la ville la plus proche d’un point donné, ou de quitter
le programme

Exercice 1.3

1. Écrire la dé�nition de la structure noeud_t représentant une cellule de liste doublement chaînée de réels
(type double) ;

2. Écrire la fonction afficher_liste() a�chant à l’écran la liste dont la tête est passée en paramètre ;

X2BI040 — Nantes Université Feuille de travaux pratiques no 1 — Langage C++ et environnement 1/3

https://madoc.univ-nantes.fr/mod/resource/view.php?id=398036


3. Écrire la fonction ajouter_en_tete() ajoutant un double en tête d’une liste chaînée et retournant la
nouvelle tête de la liste ;

4. Écrire la fonction chercher_element() retournant un pointeur sur le premier nœud contenant un double
passé en paramètre, ou nullptr si le double n’est pas présent ;

5. Écrire la fonction ajouter_element() ajoutant un double d1 passé en paramètre après un double d2
passé en paramètre. Si d2 n’est pas dans la liste, l’ajout de d1 doit se faire en tête de la liste ;

6. Écrire la fonction retirer_element() retirant un double passé en paramètre s’il est présent dans la liste ;
7. Écrire un programme principal utilisant toutes les fonctions ci-dessus.

Exercice 1.4
On considère une application où les désallocations de mémoire se font toujours dans l’ordre inverse des alloca-
tions. Pour ce type de programme, il est possible d’optimiser la gestion de la mémoire en écrivant un allocateur
spécialisé avec une stratégie « en pile » : à l’initialisation, on alloue un grand espace mémoire su�sant pour tous
les besoins du programme, c’est le tampon. L’allocateur alloue la mémoire en gérant un « pointeur » sur le début
de l’espace encore libre du tampon. Le désallocateur ramène le « pointeur » à sa position précédente.

1. Dé�nir le type tampon_t ;
2. Écrire une fonction init_tampon() prenant en entrée le nombre total d’octets à allouer et retournant un

objet de type tampon_t ;
3. Écrire une fonction allouer() prenant en entrée un tampon et le nombre d’octets à allouer et retournant

un pointeur de type void* sur le début de l’espace alloué. La fonction devra retourner nullptr si la place
restante est insu�sante pour répondre à la requête ;

4. Écrire une fonction desallouer() prenant en entrée un tampon et récupérant la place occupée par le
dernier objet alloué ;

5. Écrire une fonction delete_tampon() détruisant l’espace alloué dans le tampon ;
6. Écrire un programme principal pour tester les fonctions écrites précédemment.

Exercice 1.5
Un �chier texte contient la description d’une image composée de primitives graphiques. On considère trois pri-
mitives :

— cercle : un cercle dé�ni par les coordonnées de son centre et son rayon ;
— rectangle : un rectangle dé�ni par les coordonnées des points “haut gauche” et “bas droit” ;
— polygone : un polygone dé�ni par le nombre de côtés et les coordonnées des points le dé�nissant ;

Les coordonnées des points sont des paires de nombres entiers de type int. Le rayon d’un cercle est aussi de type
int.
Le �chier est constitué comme illustré dans l’exemple ci-dessous :

Fichier figure.dat
cercle
6,7 2
rectangle
6,7 11,4
polygone
5 1,7 3,10 2,7 4,6 2,5

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 120
0

X2BI040 — Nantes Université Feuille de travaux pratiques no 1 — Langage C++ et environnement 2/3



Le type de primitive est écrit seul sur une ligne ; la ligne suivante contient les informations dé�nissant la primitive
dans l’ordre indiqué plus haut. Le �chier est donc constitué d’un ensemble de taille variable de paires de deux
lignes.

1. Dé�nir les types cercle_t, rectangle_t et polygone_t ;
2. Dé�nir le type image_t correspondant à la description d’une image en terme de liste de primitives ;
3. Écrire la fonction lire_point() prenant en entrée un �ux ifstream et une référence sur un point_t p,

et lisant dans le �ux un point dont les coordonnées sont sauvées dans p ;
4. Écrire la fonction lire_image() prenant en entrée un �ux ifstream correspondant à un �chier de des-

cription ouvert en lecture et retournant un pointeur sur un objet de type image contenant les informations
relatives à l’image décrite dans le �chier ;

5. Écrire la fonction detruire_image() prenant en entrée une image et désallouant la mémoire associée ;
6. Écrire la fonction affiche_image() a�chant à l’écran la liste des primitives de l’image passée en para-

mètre ainsi que leurs coordonnées ;
7. Écrire le programme prenant un nom de �chier en paramètre et chargeant en mémoire la description de

l’image décrite dans le �chier. Le programme devra retourner un code d’erreur 1 en a�chant un message
d’erreur adéquat sur la sortie standard d’erreur si aucun paramètre n’a été passé sur la ligne de commande
ou si le �chier ne peut être ouvert en lecture.

Exercice 1.6
On souhaite écrire une librairie de manipulation de tableaux de doubles dont la taille peut être modi�ée dyna-
miquement. Pour cela, on se propose de créer un type tabdyn_t contenant la taille courante du tableau et une
liste chaînée de ces éléments.

1. Dé�nir le type tabdyn_t ;
2. Écrire la fonction creer_tabdyn() prenant en entrée un tableau T de doubles et sa taille, et retournant

un tabdyn contenant tous les éléments de T dans le même ordre ;
3. Écrire la fonction creer_tab() créant un tableau de doubles classique à partir d’un tabdyn_t ;
4. Écrire la fonction afficher() prenant en entrée un tabdyn_t t et un �ux os de type ostream et a�chant

le contenu de t sur os ;
5. Écrire la fonction inserer() prenant en entrée un tableau t, un �ottant f et une position i et insérant f

à la position i dans t :
— S’il existe déjà un élément à la position i, il est remplacé par f ;
— Si i fait référence à une position à l’extérieur du tableau, celui-ci est étendu (voir �gure ci-dessous) ;

6. Écrire la fonction supprimer() prenant en entrée un tabdyn_t t et un indice i et supprimant tous les
éléments du tableau à partir de i ;

7. Écrire un programme principal créant le tableau de doubles td={4.5 , 6.7 , -2.1}, créant un tabdyn_t
T1 à partir de td, a�chant T1 sur l’écran, insérant la valeur 9.8 dans T1 à l’indice 5, créant un tableau de
doubles td2 à partir de T1 et a�chant td2 à l’écran.

T

0 1 2 3

3.1 2.6 8.0 1.2

0.0 0.0 5.4T

0 1 2 3

3.1 2.6 8.0 1.2

4 5 6

Suppression à partir de la position 3

T

0 1 2

3.1 2.6 8.0

Ajout de 5.4 à la position 6

X2BI040 — Nantes Université Feuille de travaux pratiques no 1 — Langage C++ et environnement 3/3


