M1 BIO-INFO Nantes Université
X2BI040 2022/2023

Feuille de travaux pratiques n° 1
Langage C++ et environnement

Exercice 1.1

Ecrire, compiler et tester le programme C++ demandant a I'utilisateur son prénom et son nom en une seule fois et
sur la méme ligne, et affichant la phrase « Untel, votre nom comporte x lettres» ou «Untel » est remplacé

par le prénom de la personne et x par le nombre de lettres de son nom.

Exercice 1.2 (Positions géographiques)

On consideére le fichier texte coordonnees.txt suivant (disponible sur madoc) organisé en trois colonnes :

Ancenis 47.22 1.10
Auray 47.40 3.00
Brest 48.23 4.29
Carhaix 48.17 3.34
Chateaubriant 47.43 1.23
Chateaulin 48.12 4.06
Clisson 47.05 1.17

Concarneau 47.52 4.00

La premiére colonne est une chaine de caracteres désignant une ville; la deuxiéme colonne est un double dési-

gnant une latitude; la troisiéme colonne est un double désignant une longitude.

Dans la suite, on s’attachera a respecter les principes de la compilation séparée : toutes les fonctions de manipu-

lation de ville_ts seront définies dans un fichier indépendant du fichier contenant le programme principal.

1. Définir une structure ville_t composée d’'un nom, d’une latitude et d’'une longitude;

2. Ecrire la fonction 1ire_fichier() prenant en entrée un « flux » de type ifstream sur un fichier texte

ayant la structure ci-dessus et un tableau ¢ de ville_ts, et insérant dans ¢ les informations relatives aux
villes apparaissant dans le fichier;

. Ecrire la fonction chercher_par_nom() prenant en entrée un nom de ville, un tableau de ville_ts, et
retournant un pointeur sur la structure correspondante si la ville se trouve dans le tableau, ou nullptr
sinon;

. Ecrire la fonction chercher_par_position() prenant en entrée une position (i.e. une latitude et une
longitude), un tableau de ville_ts, et retournant la structure correspondant a la ville la plus proche de
cette position. Etant donnés deux points A = (I4, L4) et B = (I, Lp), on utilisera la notion de distance
suivante entre A et B :

dist(4, B) = /(la — Ip)®> + (La — Lp)?;

. Ecrire un programme affichant un menu offrant a Iutilisateur la possibilité de rechercher les coordonnées
d’une ville en donnant son nom, d’afficher le nom de la ville la plus proche d’un point donné, ou de quitter
le programme

Exercice 1.3

. Ecrire la définition de la structure noeud_t représentant une cellule de liste doublement chainée de réels
(type double);

. Ecrire la fonction afficher_liste() affichant a I'écran la liste dont la téte est passée en parametre;

X2BI040 — Nantes Université Feuille de travaux pratiques n° 1 — Langage C++ et environnement 13

https://madoc.univ-nantes.fr/mod/resource/view.php?id=398036

3. Ecrire la fonction ajouter_en_tete() ajoutant un double en téte d’une liste chainée et retournant la
nouvelle téte de la liste;

4. Ecrire la fonction chercher_element () retournant un pointeur sur le premier nceud contenant un double
passé en parametre, ou nullptr sile double n’est pas présent;

5. Ecrire la fonction ajouter_element() ajoutant un double d; passé en paramétre aprés un double ds
passé en paramétre. Si dy n’est pas dans la liste, Pajout de d; doit se faire en téte de la liste;

6. Ecrire la fonction retirer_element() retirant un double passé en paramétre s’il est présent dans la liste ;

7. Ecrire un programme principal utilisant toutes les fonctions ci-dessus.

Exercice 1.4

On considére une application ou les désallocations de mémoire se font toujours dans 'ordre inverse des alloca-
tions. Pour ce type de programme, il est possible d’optimiser la gestion de la mémoire en écrivant un allocateur
spécialisé avec une stratégie « en pile » : a 'initialisation, on alloue un grand espace mémoire suffisant pour tous
les besoins du programme, c’est le tampon. L’allocateur alloue la mémoire en gérant un « pointeur » sur le début
de I'espace encore libre du tampon. Le désallocateur rameéne le « pointeur » a sa position précédente.

1. Définir le type tampon_t;

2. Ecrire une fonction init_tampon() prenant en entrée le nombre total d’octets a allouer et retournant un
objet de type tampon_t;

3. Ecrire une fonction allouer() prenant en entrée un tampon et le nombre d’octets a allouer et retournant
un pointeur de type void#* sur le début de I’espace alloué. La fonction devra retourner nullptr sila place
restante est insuffisante pour répondre a la requéte;

4. Ecrire une fonction desallouer() prenant en entrée un tampon et récupérant la place occupée par le
dernier objet alloué;

5. Ecrire une fonction delete_tampon() détruisant I'espace alloué dans le tampon ;

6. Ecrire un programme principal pour tester les fonctions écrites précédemment.

Exercice 1.5

Un fichier texte contient la description d’'une image composée de primitives graphiques. On considere trois pri-
mitives :

— cercle : un cercle défini par les coordonnées de son centre et son rayon;

— rectangle : un rectangle défini par les coordonnées des points “haut gauche” et “bas droit”;

— polygone : un polygone défini par le nombre de c6tés et les coordonnées des points le définissant;
Les coordonnées des points sont des paires de nombres entiers de type int. Le rayon d’un cercle est aussi de type
int.
Le fichier est constitué comme illustré dans 'exemple ci-dessous :

12
11F
10
Fichier figure.dat 9r
cercle 8
6,7 2 as
rectangle 6 J
6,7 11,4 5L
polygone al
51,7 3,10 2,7 4,6 2,5 sl
ol
s
0 1 1 1

T S R N SO SO |
01 2 3 45 6 7 8 9 10 1112

X2BI040 — Nantes Université Feuille de travaux pratiques n° 1 — Langage C++ et environnement 2/3

Le type de primitive est écrit seul sur une ligne ; la ligne suivante contient les informations définissant la primitive
dans l'ordre indiqué plus haut. Le fichier est donc constitué d’un ensemble de taille variable de paires de deux

lignes.
1.
2.
3.

Définir les types cercle_t, rectangle_t et polygone_t;
Définir le type image_t correspondant a la description d’une image en terme de liste de primitives;

Ecrire la fonction 1ire_point() prenant en entrée un flux ifstream et une référence sur un point_t p,
et lisant dans le flux un point dont les coordonnées sont sauvées dans p;

Ecrire la fonction lire_image () prenant en entrée un flux ifstream correspondant & un fichier de des-
cription ouvert en lecture et retournant un pointeur sur un objet de type image contenant les informations
relatives a I'image décrite dans le fichier;

Ecrire la fonction detruire_image() prenant en entrée une image et désallouant la mémoire associée;
Ecrire la fonction affiche_image () affichant a I’écran la liste des primitives de I'image passée en para-
metre ainsi que leurs coordonnées;

Ecrire le programme prenant un nom de fichier en paramétre et chargeant en mémoire la description de
I'image décrite dans le fichier. Le programme devra retourner un code d’erreur 1 en affichant un message
d’erreur adéquat sur la sortie standard d’erreur si aucun parametre n’a été passé sur la ligne de commande
ou si le fichier ne peut étre ouvert en lecture.

Exercice 1.6

On souhaite écrire une librairie de manipulation de tableaux de doubles dont la taille peut étre modifiée dyna-
miquement. Pour cela, on se propose de créer un type tabdyn_t contenant la taille courante du tableau et une
liste chainée de ces éléments.

1.
2.

Définir le type tabdyn_t;

Ecrire la fonction creer_tabdyn() prenant en entrée un tableau T de doubles et sa taille, et retournant
un tabdyn contenant tous les éléments de T dans le méme ordre;

3. Ecrire la fonction creer_tab() créant un tableau de doubles classique a partir d’'un tabdyn_t;

Ecrire la fonction afficher () prenant en entrée un tabdyn_t t et un flux os de type ostream et affichant
le contenu de t sur os;

Ecrire la fonction inserer() prenant en entrée un tableau t, un flottant f et une position i et insérant f
a la position i dans t :

— S’il existe déja un élément a la position i, il est remplacé par f;

— Si i fait référence a une position a 'extérieur du tableau, celui-ci est étendu (voir figure ci-dessous);
Ecrire la fonction supprimer() prenant en entrée un tabdyn_t t et un indice i et supprimant tous les
éléments du tableau a partir de i;

Ecrire un programme principal créant le tableau de doubles td={4.5 , 6.7 , -2.1},créantun tabdyn_t
T1 a partir de td, affichant T1 sur écran, insérant la valeur 9.8 dans T1 a I'indice 5, créant un tableau de
doubles td2 a partir de T1 et affichant td2 a I’écran.

0 1 2 3
T |31/26]80]|1.2

Ajout de 5.4 & la position 6

0 1 2 3 4 5
T |[31/26]80(12|00/|00]|54

Suppression a partir de la position 3

0 1 2
T |31/26]80

X2BI040 — Nantes Université Feuille de travaux pratiques n° 1 — Langage C++ et environnement 3/3

