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Présentation du cours

I Lire le syllabus sur madoc
I Fascicules

I Format :
I 3 cours magistraux seulement

I Présentation synthétique des éléments du cours
I 6 séances de travaux dirigés

I Deux contrôles continus sur table
(CC1, 30 minutes, sur 5 points et CC2, 1h, sur 15 points)

I Trois quiz sur madoc (Q1, Q2, Q3)
I Faire les exercices à l’avance (liste minimale sur le planning)

I 8 séances de travaux pratiques
I Un projet (P1) sur 20 points

I Évaluation :

Note CC =
60(CC1+ CC2) + 40P1

100
I Langage C++ sans POO (standard C++11/C++17) utilisé comme du C
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Plan du cours

I Le langage C++ et son environnement
I C++ et la mémoire
I Pointeurs
I Fonctions (passage de paramètres, pointeurs, mémoire)
I Types C++ (tableaux, union, enum, struct)

I Les types abstraits, implémentations et algorithmes associés
I Piles, files
I Arbres, graphes
I Tables de hachage
I Ensembles et multi-ensembles

I Algorithmes
I Performances des algorithmes (notation O — « grand O »)
I Programmation dynamique
I Algorithmes gloutons
I Algorithmes branch-and-bound
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Planning prévisionnel
X2BI040

2022/2023

(1) 02/01–06/01

(2) 09/01–13/01 1.4, 1.9

(3) 16/01–20/01 2.1, 2.2 Langage C++ & environnement

(4) 23/01–27/01 2,4

(5) 30/01–03/02 Types abstraits

(6) 06/02–10/02 3,1, 3.2 Algorithmes

(7) 13/02–17/02

(8) 20/02–24/02 VACANCES VACANCES VACANCES VACANCES VACANCES

(9) 27/02–03/03

v. 2, 2023-01-02
3 CMs, 6 TDs, 8 TPs

Exercices de TDs à préparer 
(au minimum)

Quiz
(date limite de complétion)

CM 1
Présentation + Langage C++

TP 1

Langage C++

TD 1
Langage C++

CM 2
Types abstraits

TD 2
Langage C++

TP 2

Langage C++

TD 3
Types abstraits

CM 3
Algorithmes

TP 3

Types abstraits
CC 1

Langage C++ & environnement

TD 4
Types abstraits

TD 5
Algorithmes

TP 4

Types abstraits

CC 2
Types abstraits + algorithmes

TP 5

Types abstraits

TP 6

Projet

TP 7

Projet

TP 8

Projet

Susceptible de modifications (dernière version sur madoc)
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Le langage C++ et son environnement
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La mémoire

0

1

3

...
4294967295

4294967294

2

4 GB

1 octet

http
s://

www.ebuyer.com/blog/wp-content/uploads/2
017/06/dram-memory-module.jpg
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La mémoire

Notation hexadécimale des
adresses

429496729510 =4× 109 + 2× 108 + · · ·
+ 9× 101 + 5× 100

=15× 167 + 15× 166 · · ·
+ 15× 161 + 15× 160

=F × 167 + F × 166 · · ·
+ F × 161 + F × 160

=FFFFFFFF16
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La mémoire

Notation hexadécimale des
adresses

429496729510 =4× 109 + 2× 108 + · · ·
+ 9× 101 + 5× 100

=15× 167 + 15× 166 · · ·
+ 15× 161 + 15× 160

=F × 167 + F × 166 · · ·
+ F × 161 + F × 160

=FFFFFFFF16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7 8 9 A B C D E F
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Représentation en mémoire

// Programme sur une machine 32 bits
int x = 1012; // x == 0x3f4
int y = 0x21; // y == 2*16^1 + 1*16^0 = 33
int *z = &x;
double t = 0.1;

int main(void)
{

// [...]
}
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Chargement d’un programme en mémoire

0x0

0x40000000

0xc0000000

Noyau

Pile

DLL

Tas

bss

data

text

int x;
int y = 100;

int main(void)
{
   char *str = "Hello";
   double z = cos(42);
   int *t = new int[10];
}

0xffffffff
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Appel de fonction (1)

void f(int *a, int b)
{
   *a = b;
}

int main(void)
{
   int x = 3;
   f(&x, 7);
}

Pile
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Appel de fonction (1)
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Appel de fonction (2)

#include <iostream>

using namespace std;

int *f(int a)
{

int b = a*a;
return &b;

}

int main(void)
{

int *x = f(6);

int z1 = *x+2;
cout << z1 << endl;
int z2 = *x*2;
cout << z2 << endl;

}

Résultat ?

I Depuis g++ 5.0.0 :
Warning + mise à 0 de
l’adresse retournée

I Crash lors du calcul *x+2
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Appel de fonction (2)

#include <iostream>
using namespace std;

void f(int a, int **c)
{

int b = a*a;
*c=&b;

}

int main(void)
{

int *x;
f(6,&x);

int y1 = *x+2;
cout << y1 << "\n";
int y2 = *x+2;
cout << y2 << "\n";

}

Résultat ?

I 38, puis 2
I Valeur locale de b écrasée

sur la pile
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Passage de paramètres

I Passage par valeur. On met une copie du paramètre sur la pile
#include <iostream>
void add(int a, int b)
{

a += b;
}
int main(void)
{

int a = 12;
std::cout << a << "\n"; // 12
add(a,45);
std::cout << a << "\n"; // 12

}

I Passage par adresse. On met une
copie de l’adresse du paramètre sur
la pile
#include <iostream>
void add(int *a, int b)
{

*a += b;
}
int main(void)
{

int a = 12;
std::cout << a << "\n"; // 12
add(&a,45);
std::cout << a << "\n"; // 57

}

I Passage par référence. On met une
copie de l’adresse du paramètre sur
la pile
#include <iostream>
void add(int& a, int b)
{

a += b;
}
int main(void)
{

int a = 12;
std::cout << a << "\n"; // 12
add(a,45);
std::cout << a << "\n"; // 57

}
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Macros et pré-processing

main.cpp mainmain.cpp main.s main.o

pré-processing compilation assemblage édition des liens

g++ -std=c++11 -Wall -o main main.cpp

I Remplacement textuel dans l’étape de pré-processing
#include <iostream>
#define SIZE 9

#ifndef NDEBUG
# define DBG_MSG(str) do { \

std::cerr << "DEBUG MESG: " << str << "\n"; \
} while (0)

#else
# define DBG_MSG(str)
#endif

int main(void)
{

int T[SIZE];
DBG_MSG("the program was there.");

}

// [Contenu de iostream]
int main(void)
{

int T[9];
do { std::cerr << "DEBUG MESG: " << "the program was there." << "\n"; } while (0);

}
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Compilation séparée (1)

main.cpp

gui.hpp

complex.hpp
#include

#include

#
in

cl
u
d
e

#
in

cl
u
d
e

complex.o

gui.cpp

gui.o

g++ -std=c++11 -Wall -c complex.cpp

g++ -std=c++11 -Wall -c gui.cpp

complex.cpp

cmath

#include

libm.so

main
g++ -std=c++11 -Wall -o main main.cpp complex.o gui.o -lm
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Compilation séparée (2)

I Unité de compilation : un fichier « .cpp »
I Chaque unité de compilation contient un ensemble cohérent de

fonctions
I Fournir un en-tête « .hpp » pour chaque unité listant les

déclarations des fonctions et des types à exporter
I Chaque unité est compilée séparément en un fichier objet
I Plusieurs fichiers objets peuvent être rassemblés en une

bibliothèque (statique ou dynamique)
I Édition des liens : collecte de tous les fichiers objets et des

bibliothèques pour générer un exécutable

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 14/44



Les tableaux / chaînes de caractères

#include <iostream>
using namespace std;
const uint32_t SZ = 5;
int T1[]{ 2, 3, 4, 5, 6 };
double T2[SZ]{ 0.5, -6.5, 3.2, 0.0, -9.1 };
char T3[]{"Hello"};
const char *T4{"Hello"};
char T5[]{’H’,’e’,’l’,’l’,’o’,’\0’};
int main(void)
{

double *T6 = new double[SZ*SZ];
// T6[3][2] = 0.0; // Non !
T6[3*SZ+2] = 0.0; // Oui
*(T6+3*SZ+2) = 0.0; // Oui
delete[] T6;
for (uint32_t i = 0; i < SZ; ++i) {

cout << T2[i] << " ";
}
cout << "\n";

}

#include <iostream>
#include <vector>
#include <array>
#include <string>
using namespace std;

const uint32_t SZ = 5;
vector<int> T1{2,3,4,5};
vector<double> T2{ 0.5, -6.5, 3.2, 0.0, -9.1 };
array<double, SZ> T2b{ 0.5, -6.5, 3.2, 0.0, -9.1 };
string T3{"Hello"};

int main(void)
{

array<array<double, SZ>, SZ> T6;
T6[3][2] = 0.0;
for (auto v : T2b) {

std::cout << v << " ";
}
std::cout << "\n";

}

I Pas de range checking (attention aux buffers overflow/overrun)
I Temps d’accès en O(1)
I Éléments contigus en mémoire ⇒ exploitation des caches possible
I array : connaît sa taille (.size()) ; value semantic
I Utiliser « array » si tableau de taille fixe connue à la compilation
I Utiliser « vector » si tableau de taille variable
I Éviter les tableaux POD si possible
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Les enums

#include <iostream>
int main(void)
{

enum ville_t {
londres, // 0
paris, // 1
bruxelles = 5, // 5
amsterdam // 6

};
enum class pays_t {

france, // 0
espagne, // 1
belgique // 2

};

ville_t x = londres;
ville_t y = amsterdam;
if (x+y >= 6) {

std::cout << "ok!\n";
}
std::cout << int(pays_t::france) << "\n";

}

I enum :

I Déclaration de
constantes globales de
type int

I enum class

I Déclarations de
constantes dans l’espace
de nom du type

I Pas de valeur int sans
cast explicite
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Les unions

int main(void)
{

union divers_t {
int i;
double d;
char c;

};
divers_t x {.i = 5};
x.d = 12.3;

}

I Tous les champs partagent l’espace
mémoire (sizeof(divers_t)>
taille du plus grand champ)

I Stocker à part quel est le champ
actuellement utilisé

I Deux utilisations :
I Réduire l’espace utilisé
I réinterpréter une valeur dans

un nouveau contexte
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Les structs

#include <cstdint>
int main(void)
{

struct personne_t {
const char *nom;
const char *prenom;
uint8_t age;

};
using personnep_t = personne_t*; // typedef personne_t* personne_t_p;
personne_t ichabod = {

"Ichabod",
"Crane",
35

};
personnep_t icha_p = &ichabod;

}

I Chaque champ a son propre espace
mémoire

I Utile pour stocker des valeurs en
relation

I sizeof(personne_t) >
sizeof(char*)*2+sizeof(uint8_t)
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Les listes chaînées

1 2 3

#include <iostream>
using namespace std;
struct node_t {

int v;
node_t *next;

};

int main(void)
{

node_t *head {nullptr};
for (int i = 3; i >= 1; --i) {

node_t *current {new node_t};
current->v = i;
current->next = head;
head = current;

}

node_t *tmp {head};
while (tmp != nullptr) {

cout << tmp->v << " ";
tmp = tmp->next;

}
cout << ’\n’;

// Destruction de la liste
while (head != nullptr) {

node_t *next {head->next};
delete head;
head = next;

}
}

I Construction indispensable pour la gestion de structures dynamiques (piles, files,
. . .)

I Temps d’accès en O(n)
I Réorganisation des éléments peu coûteuse
I Éléments non contigus en mémoire ⇒ impact sur les performances
I Disponible dans la bibliothèque standard STL (« list »)
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Fin du cours
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