
Algorithmique et Programmation
Niveau 2

Frédéric Goualard

Laboratoire des Sciences du Numérique de Nantes, UMR CNRS 6004
Office #112-11

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 1/44

http://frederic.goualard.net/

Présentation du cours

I Lire le syllabus sur madoc
I Fascicules

I Format :
I 3 cours magistraux seulement

I Présentation synthétique des éléments du cours
I 6 séances de travaux dirigés

I Deux contrôles continus sur table
(CC1, 30 minutes, sur 5 points et CC2, 1h, sur 15 points)

I Trois quiz sur madoc (Q1, Q2, Q3)
I Faire les exercices à l’avance (liste minimale sur le planning)

I 8 séances de travaux pratiques
I Un projet (P1) sur 20 points

I Évaluation :

Note CC =
60(CC1+ CC2) + 40P1

100
I Langage C++ sans POO (standard C++11/C++17) utilisé comme du C

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 2/44

http://madoc.univ-nantes.fr/mod/resource/view.php?id=462854
https://madoc.univ-nantes.fr/mod/resource/view.php?id=397756

Plan du cours

I Le langage C++ et son environnement
I C++ et la mémoire
I Pointeurs
I Fonctions (passage de paramètres, pointeurs, mémoire)
I Types C++ (tableaux, union, enum, struct)

I Les types abstraits, implémentations et algorithmes associés
I Piles, files
I Arbres, graphes
I Tables de hachage
I Ensembles et multi-ensembles

I Algorithmes
I Performances des algorithmes (notation O — « grand O »)
I Programmation dynamique
I Algorithmes gloutons
I Algorithmes branch-and-bound

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 3/44

Planning prévisionnel
X2BI040

2022/2023

(1) 02/01–06/01

(2) 09/01–13/01 1.4, 1.9

(3) 16/01–20/01 2.1, 2.2 Langage C++ & environnement

(4) 23/01–27/01 2,4

(5) 30/01–03/02 Types abstraits

(6) 06/02–10/02 3,1, 3.2 Algorithmes

(7) 13/02–17/02

(8) 20/02–24/02 VACANCES VACANCES VACANCES VACANCES VACANCES

(9) 27/02–03/03

v. 2, 2023-01-02
3 CMs, 6 TDs, 8 TPs

Exercices de TDs à préparer
(au minimum)

Quiz
(date limite de complétion)

CM 1
Présentation + Langage C++

TP 1

Langage C++

TD 1
Langage C++

CM 2
Types abstraits

TD 2
Langage C++

TP 2

Langage C++

TD 3
Types abstraits

CM 3
Algorithmes

TP 3

Types abstraits
CC 1

Langage C++ & environnement

TD 4
Types abstraits

TD 5
Algorithmes

TP 4

Types abstraits

CC 2
Types abstraits + algorithmes

TP 5

Types abstraits

TP 6

Projet

TP 7

Projet

TP 8

Projet

Susceptible de modifications (dernière version sur madoc)

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 4/44

http://madoc.univ-nantes.fr/mod/resource/view.php?id=397756

Le langage C++ et son environnement

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 5/44

La mémoire

0

1

3

...
4294967295

4294967294

2

4 GB

1 octet

http
s://

www.ebuyer.com/blog/wp-content/uploads/2
017/06/dram-memory-module.jpg

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 6/44

La mémoire

Notation hexadécimale des
adresses

429496729510 =4× 109 + 2× 108 + · · ·
+ 9× 101 + 5× 100

=15× 167 + 15× 166 · · ·
+ 15× 161 + 15× 160

=F × 167 + F × 166 · · ·
+ F × 161 + F × 160

=FFFFFFFF16

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 6/44

La mémoire

Notation hexadécimale des
adresses

429496729510 =4× 109 + 2× 108 + · · ·
+ 9× 101 + 5× 100

=15× 167 + 15× 166 · · ·
+ 15× 161 + 15× 160

=F × 167 + F × 166 · · ·
+ F × 161 + F × 160

=FFFFFFFF16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7 8 9 A B C D E F

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 6/44

Représentation en mémoire

// Programme sur une machine 32 bits
int x = 1012; // x == 0x3f4
int y = 0x21; // y == 2*16^1 + 1*16^0 = 33
int *z = &x;
double t = 0.1;

int main(void)
{

// [...]
}

0x00000009

0x0000000a

0x0000000b

0x0000000c

0x0000000d

0x0000000e

0x0000000f

0x00000010

0x00000011

0x00000012

0x00000013

0x00000014

0x00000015

0x00000016

0x00000017

0x00000018

0x00000019

0x0000001a

0x0000001b

0x0000001c

0x03

0xf4

0x21

0x99

0x99

0x9a

0x00

0x00

0x00

0x09

0x00

0x00

0x00

0x00

0x00

0x3f

0xb9

0x99

0x99

0x99

x

y

z

t

...

...

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 7/44

Chargement d’un programme en mémoire

0x0

0x40000000

0xc0000000

Noyau

Pile

DLL

Tas

bss

data

text

int x;
int y = 100;

int main(void)
{
 char *str = "Hello";
 double z = cos(42);
 int *t = new int[10];
}

0xffffffff

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 8/44

Appel de fonction (1)

void f(int *a, int b)
{
 *a = b;
}

int main(void)
{
 int x = 3;
 f(&x, 7);
}

Pile

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 9/44

Appel de fonction (1)

void f(int *a, int b)
{
 *a = b;
}

int main(void)
{
 int x = 3;
 f(&x, 7);
}

Pile

0xb4564300

7

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 9/44

Appel de fonction (1)

void f(int *a, int b)
{
 *a = b;
}

int main(void)
{
 int x = 3;
 f(&x, 7);
}

Pile

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 9/44

Appel de fonction (2)

#include <iostream>

using namespace std;

int *f(int a)
{

int b = a*a;
return &b;

}

int main(void)
{

int *x = f(6);

int z1 = *x+2;
cout << z1 << endl;
int z2 = *x*2;
cout << z2 << endl;

}

Résultat ?

I Depuis g++ 5.0.0 :
Warning + mise à 0 de
l’adresse retournée

I Crash lors du calcul *x+2

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 10/44

Appel de fonction (2)

#include <iostream>

using namespace std;

int *f(int a)
{

int b = a*a;
return &b;

}

int main(void)
{

int *x = f(6);

int z1 = *x+2;
cout << z1 << endl;
int z2 = *x*2;
cout << z2 << endl;

}

Résultat ?
I Depuis g++ 5.0.0 :

Warning + mise à 0 de
l’adresse retournée

I Crash lors du calcul *x+2

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 10/44

Appel de fonction (2)

#include <iostream>
using namespace std;

void f(int a, int **c)
{

int b = a*a;
*c=&b;

}

int main(void)
{

int *x;
f(6,&x);

int y1 = *x+2;
cout << y1 << "\n";
int y2 = *x+2;
cout << y2 << "\n";

}

Résultat ?

I 38, puis 2
I Valeur locale de b écrasée

sur la pile

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 10/44

Appel de fonction (2)

#include <iostream>
using namespace std;

void f(int a, int **c)
{

int b = a*a;
*c=&b;

}

int main(void)
{

int *x;
f(6,&x);

int y1 = *x+2;
cout << y1 << "\n";
int y2 = *x+2;
cout << y2 << "\n";

}

Résultat ?
I 38, puis 2
I Valeur locale de b écrasée

sur la pile

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 10/44

Passage de paramètres

I Passage par valeur. On met une copie du paramètre sur la pile
#include <iostream>
void add(int a, int b)
{

a += b;
}
int main(void)
{

int a = 12;
std::cout << a << "\n"; // 12
add(a,45);
std::cout << a << "\n"; // 12

}

I Passage par adresse. On met une
copie de l’adresse du paramètre sur
la pile
#include <iostream>
void add(int *a, int b)
{

*a += b;
}
int main(void)
{

int a = 12;
std::cout << a << "\n"; // 12
add(&a,45);
std::cout << a << "\n"; // 57

}

I Passage par référence. On met une
copie de l’adresse du paramètre sur
la pile
#include <iostream>
void add(int& a, int b)
{

a += b;
}
int main(void)
{

int a = 12;
std::cout << a << "\n"; // 12
add(a,45);
std::cout << a << "\n"; // 57

}

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 11/44

Macros et pré-processing

main.cpp mainmain.cpp main.s main.o

pré-processing compilation assemblage édition des liens

g++ -std=c++11 -Wall -o main main.cpp

I Remplacement textuel dans l’étape de pré-processing
#include <iostream>
#define SIZE 9

#ifndef NDEBUG
define DBG_MSG(str) do { \

std::cerr << "DEBUG MESG: " << str << "\n"; \
} while (0)

#else
define DBG_MSG(str)
#endif

int main(void)
{

int T[SIZE];
DBG_MSG("the program was there.");

}

// [Contenu de iostream]
int main(void)
{

int T[9];
do { std::cerr << "DEBUG MESG: " << "the program was there." << "\n"; } while (0);

}

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 12/44

Compilation séparée (1)

main.cpp

gui.hpp

complex.hpp
#include

#include

#
in

cl
u
d
e

#
in

cl
u
d
e

complex.o

gui.cpp

gui.o

g++ -std=c++11 -Wall -c complex.cpp

g++ -std=c++11 -Wall -c gui.cpp

complex.cpp

cmath

#include

libm.so

main
g++ -std=c++11 -Wall -o main main.cpp complex.o gui.o -lm

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 13/44

Compilation séparée (2)

I Unité de compilation : un fichier « .cpp »
I Chaque unité de compilation contient un ensemble cohérent de

fonctions
I Fournir un en-tête « .hpp » pour chaque unité listant les

déclarations des fonctions et des types à exporter
I Chaque unité est compilée séparément en un fichier objet
I Plusieurs fichiers objets peuvent être rassemblés en une

bibliothèque (statique ou dynamique)
I Édition des liens : collecte de tous les fichiers objets et des

bibliothèques pour générer un exécutable

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 14/44

Les tableaux / chaînes de caractères

#include <iostream>
using namespace std;
const uint32_t SZ = 5;
int T1[]{ 2, 3, 4, 5, 6 };
double T2[SZ]{ 0.5, -6.5, 3.2, 0.0, -9.1 };
char T3[]{"Hello"};
const char *T4{"Hello"};
char T5[]{’H’,’e’,’l’,’l’,’o’,’\0’};
int main(void)
{

double *T6 = new double[SZ*SZ];
// T6[3][2] = 0.0; // Non !
T6[3*SZ+2] = 0.0; // Oui
*(T6+3*SZ+2) = 0.0; // Oui
delete[] T6;
for (uint32_t i = 0; i < SZ; ++i) {

cout << T2[i] << " ";
}
cout << "\n";

}

#include <iostream>
#include <vector>
#include <array>
#include <string>
using namespace std;

const uint32_t SZ = 5;
vector<int> T1{2,3,4,5};
vector<double> T2{ 0.5, -6.5, 3.2, 0.0, -9.1 };
array<double, SZ> T2b{ 0.5, -6.5, 3.2, 0.0, -9.1 };
string T3{"Hello"};

int main(void)
{

array<array<double, SZ>, SZ> T6;
T6[3][2] = 0.0;
for (auto v : T2b) {

std::cout << v << " ";
}
std::cout << "\n";

}

I Pas de range checking (attention aux buffers overflow/overrun)
I Temps d’accès en O(1)
I Éléments contigus en mémoire ⇒ exploitation des caches possible
I array : connaît sa taille (.size()) ; value semantic
I Utiliser « array » si tableau de taille fixe connue à la compilation
I Utiliser « vector » si tableau de taille variable
I Éviter les tableaux POD si possible

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 15/44

Les enums

#include <iostream>
int main(void)
{

enum ville_t {
londres, // 0
paris, // 1
bruxelles = 5, // 5
amsterdam // 6

};
enum class pays_t {

france, // 0
espagne, // 1
belgique // 2

};

ville_t x = londres;
ville_t y = amsterdam;
if (x+y >= 6) {

std::cout << "ok!\n";
}
std::cout << int(pays_t::france) << "\n";

}

I enum :

I Déclaration de
constantes globales de
type int

I enum class

I Déclarations de
constantes dans l’espace
de nom du type

I Pas de valeur int sans
cast explicite

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 16/44

Les unions

int main(void)
{

union divers_t {
int i;
double d;
char c;

};
divers_t x {.i = 5};
x.d = 12.3;

}

I Tous les champs partagent l’espace
mémoire (sizeof(divers_t)>
taille du plus grand champ)

I Stocker à part quel est le champ
actuellement utilisé

I Deux utilisations :
I Réduire l’espace utilisé
I réinterpréter une valeur dans

un nouveau contexte

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 17/44

Les structs

#include <cstdint>
int main(void)
{

struct personne_t {
const char *nom;
const char *prenom;
uint8_t age;

};
using personnep_t = personne_t*; // typedef personne_t* personne_t_p;
personne_t ichabod = {

"Ichabod",
"Crane",
35

};
personnep_t icha_p = &ichabod;

}

I Chaque champ a son propre espace
mémoire

I Utile pour stocker des valeurs en
relation

I sizeof(personne_t) >
sizeof(char*)*2+sizeof(uint8_t)

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 18/44

Les listes chaînées

1 2 3

#include <iostream>
using namespace std;
struct node_t {

int v;
node_t *next;

};

int main(void)
{

node_t *head {nullptr};
for (int i = 3; i >= 1; --i) {

node_t *current {new node_t};
current->v = i;
current->next = head;
head = current;

}

node_t *tmp {head};
while (tmp != nullptr) {

cout << tmp->v << " ";
tmp = tmp->next;

}
cout << ’\n’;

// Destruction de la liste
while (head != nullptr) {

node_t *next {head->next};
delete head;
head = next;

}
}

I Construction indispensable pour la gestion de structures dynamiques (piles, files,
. . .)

I Temps d’accès en O(n)
I Réorganisation des éléments peu coûteuse
I Éléments non contigus en mémoire ⇒ impact sur les performances
I Disponible dans la bibliothèque standard STL (« list »)

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 19/44

Fin du cours

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 44/44

