Algorithmique et Programmation
Niveau 2

Frédéric Goualard

Laboratoire des Sciences du Numérique de Nantes, UMR CNRS 6004
Office #112-11

Alg. & Prog. 2 — X2BIl040 v. 2, 2023-01-02 — 1/44

http://frederic.goualard.net/

NI P .
v Présentation du cours

» Lire le syllabus sur madoc
» Fascicules
> Format :

» 3 cours magistraux seulement

» Présentation synthétique des éléments du cours
» 6 séances de travaux dirigés

» Deux contrdles continus sur table

(CC1, 30 minutes, sur 5 points et . 1h, sur 15 points)
» Trois quiz sur madoc (01, 02, 03)

> Faire les exercices a I'avance (liste minimale sur le planning)
» 8 séances de travaux pratiques
» Un projet (1) sur 20 points
» Evaluation :

_60(+)+ 40
Note CC = 100

» Langage C++ sans POO (standard C++11/C++17) utilisé comme du C

http://madoc.univ-nantes.fr/mod/resource/view.php?id=462854
https://madoc.univ-nantes.fr/mod/resource/view.php?id=397756

U Plan du cours

» Le langage C++ et son environnement
» C++ et la mémoire
» Pointeurs
» Fonctions (passage de paramétres, pointeurs, mémoire)
> Types C++ (tableaux, union, enum, struct)
» Les types abstraits, implémentations et algorithmes associés
» Piles, files
» Arbres, graphes
» Tables de hachage
P> Ensembles et multi-ensembles
» Algorithmes
» Performances des algorithmes (notation O — « grand O »)
» Programmation dynamique
» Algorithmes gloutons
» Algorithmes branch-and-bound

N . L
W Planning prévisionnel
X2B1040

2022/2023
vammo: |[Exercices de TDs a préparer Quiz
sGesTonaTes (au minimum) (date limite de complétion)
T
cM1
(0 0201-06/01 .
Présentation + Langage C++ G
T2
cm2
@osi01-1301 1419 ’
WS EEED Langage C++
s ™3
@ 1601-2001 2122 Langage C++ & environnement "
AIIES Types abstraits
@2301-27101 24
Ta
©)3001-03102 Types abstraits
Types abstraits
™5
© 06102-1002 a3z Algorithmes
Types abstraits
™6
(7) 13/02-17/02
Projet
© 2002-24002
™7 P8
(9) 27/02-03/03
Prjet Prjet

Susceptible de modifications (derniére version sur madoc)

/44

& Prog. 2 X2Bl040 v. 2, 2023

http://madoc.univ-nantes.fr/mod/resource/view.php?id=397756

Le langage C++ et son environnement

Alg. & Prog. 2 — X2BIl040 v. 2, 2023-01-02 — 5/44

v La mémoire

1 octet

4294967295

4294967294

M N = O

4 GB

NI) .
v La mémoire

1 octet

OXFFFFFFFF

OXFFFFFFFE

0x00000003

0x00000002

0x00000001

0x00000000

4 GB

429496729519 =/ x 10% 4+ 7 x 108 + - - -
+0x 10t +5 x 100

=15 %1674 15 x 16°- -

415 %x 161 4 15 x 16°

=/ x16"+/ x16°...
+ 7 %161 + 1 x 16°
—FFFFFFFF6

NI) .
v La mémoire

1 octet

OXFFFFFFFF

OXFFFFFFFE

0x00000003

0x00000002

0x00000001

0x00000000

4 GB

429496729519 =/ x 10% 4+ 7 x 108 + - - -
+0x 10t +5 x 100

=15 %1674 15 x 16°- -

415 %x 161 4 15 x 16°

=/ x16"+/ x16°...
+ 7 %161 + 1 x 16°
—FFFFFFFF6

(A , , L.
v Représentation en mémoire

0x0000001c | Ox3f
0x0000001b [Oxb9
0x0000001a| 0x99 |
0x00000019 | 0x99

// Programme sur une machine 32 bits 0x00000018 | 0x99
int = 1012; // z == 0z3f4 0x00000017 0x99
int = 0x21;: // y == 2%16°1 + 1¥16°0 = 33 0x00000016 0x99
int *z = & 0x00000015 0x9a
double - 0.1 0x00000014
0x00000013
. . . 0x00000012
int main(void x
0x00000011
0x00000010 | 0x00
/7L 0x0000000f | 0x00

0x0000000e 0x00
0x0000000d 0x21
0x0000000c
0x0000000b
0x0000000a
0x00000009

N , L.
w Chargement d'un programme en mémoire

OxfEEEEFFF

0xc0000000

0x40000000 int main{vpid)

double'z = cds(42);
*t = new int[10];

0x0

Alg. & Prog. 2 — X2BIl040 v. 2, 2023-01-02 — 8/44

c Appel de fonction (1)

void f(int *a, int b)

*a = b;

h
int main(void)
intx = 3;

f(&x, 7);
h

Alg. & Prog. 2 — X2BIl040 v. 2, 2023-01-02 — 9/44

c Appel de fonction (1)

void f(int *a, int b)
{

*a = b;

}

int main(void)

int x = 3;
f(&x, 7);
}

Alg. & Prog. 2 — X2BIl040 v. 2, 2023-01-02 — 9/44

c Appel de fonction (1)

void f(int *a, int b)

*a = b;

}
int main(void)
intx = 3;

f(&x, 7);
}

Alg. & Prog. 2 — X2BIl040 v. 2, 2023-01-02 — 9/44

c Appel de fonction (2)

#include <iostream> Résultat ?
using namespace std;

int *f(int a)
{
int b = a*a;
return &b;

}

int main(void)
{
int *x = £(6);

int zl = *x+2;
cout << zl << endl;
int z2 = *x*2;
cout << z2 << endl;

Alg. & Prog. 2 — X2BI1040 v. 2, 2023-01-02 — 10/44

U‘I Appel de fonction (2)

#include <iostream>
using namespace std;

int *f(int a)
{
int b = a*a;
return &b;

}

int main(void)
{
int *x = £(6);

int zl = *x+2;
cout << zl << endl;
int z2 = *x*2;
cout << z2 << endl;

Résultat ?

» Depuis g++ 5.0.0 :
Warning + mise a 0 de
I'adresse retournée

» Crash lors du calcul *x+2

3 Appel de fonction (2)

#include <iostream> Résultat ?
using namespace std;

void f(int a, int **c)
{

int b = a*a;

*Cc=&b;
}

int main(void)
{
int *x;
£(6,&x);

int y1 = *x+2;
cout << y1 << "\n'";
int y2 = *x+2;
cout << y2 << "\n";

3 Appel de fonction (2)

#include <iostream> Résultat?
using namespace std; .
> 38, puis 2
Z°1d f(int a, int *xc) » Valeur locale de b écrasée
int b = a%a; sur la pile
*Cc=&b;
}

int main(void)
{
int *x;
£(6,4x);

int y1 = *x+2;
cout << y1 << "\n'";
int y2 = *x+2;
cout << y2 << "\n'";

NI R
W Passage de parametres

>

. On met une copie du paramétre sur la pile

#include <iostream>
void add(int a, int b)
{
a += b
}
int main(void)
{
int a = 12;
std::cout << a << "\n"; // 12
add(a,45);
std::cout << a << "\n"; // 12

. On met une
copie de |'adresse du paramétre sur
la pile
#include <iostream>
void add(int *a, int b)

{
*a += b;
}
int main(void)
{
int a = 12;
std::cout << a << "\n"; // 12
add(&a,45);
std::cout << a << "\n"; // 57

. On met une
copie de |'adresse du paramétre sur

la pile
#include <iostream>
void add(int& a, int b)
{
a += b;
}
int main(void)
{
int a = 123
std::cout << a << "\n"; // 12
add(a,45);
std::cout << a << "\n"; // 57

“Il\/l t oré :
W Vacros et pre-processing

pré-processing compilation assemblage édition des liens

main.cpp ——> main.copp —> main.s ——> main.o ——> main

g++ -std=c++11 -Wall -o main main.cpp

v, , .
» Remplacement textuel dans |'étape de pré-processing

#include <iostream>

#define SIZE 9

#ifndef NDEBUG

define DBG_MSG(str) do { |

std::cerr << "DEBUG MESG: " << str << "\n"; \
} while (0)

#else

define DBG_MSG(str)

#endif

int main(void)
{

int T[SIZE];

DBG_MSG("the program was there.");
¥

// [Contenu de iostream]
int main(void)
{
int T[9];
do { std::cerr << "DEBUG MESG: " << "the program was there." << "\n"; } while (0);
}

3 Compilation séparée (1)

cmath libm.so
#ir@ude
complex.h - complex.c
P PP #include P PP
a g++ -std=c++11 -&vall -c complex.cpp
e
% complex.o
=
3
main.c > i
.Cpp main
g++ -std=c++11 -Wall -o main main.cpp complex.o gui.o -Im
D
ke
= .
g gul.o
3 .
g++ -std=c++1] -Wall -c gui.cpp

#include gui.cpp

Q
=3
>

e}

©

c Compilation séparée (2)

» Unité de compilation : un fichier « .cpp »

» Chaque unité de compilation contient un ensemble cohérent de
fonctions

» Fournir un en-téte « .hpp » pour chaque unité listant les
déclarations des fonctions et des types a exporter

v

Chaque unité est compilée séparément en un fichier objet

» Plusieurs fichiers objets peuvent étre rassemblés en une
bibliotheéque (statique ou dynamique)

» Edition des liens : collecte de tous les fichiers objets et des
bibliothéques pour générer un exécutable

U W | es tableaux / chaines de caractéres

#include <iostream>
using namespace std;
const uint32_t SZ = 5;

int T1[1{ 2, 3, 4, 5, 6 };

#include <iostream>

#include <vector>
#include <array>
#include <string>

using namespace std;

const uint32_t SZ = 5;
vector<int> T1{2,3,4,5};
vector<double> T2{ 0.5,
array<double, SZ> T2b{ 0.5,
string T3{"Hello"};

-6.5, 3.2, 0.0,
-6.5, 3.2, 0.0,

-9.1 };

int main(void)

{
array<array<double, SZ>,
Te[3][2] =
for (auto v :

SZ> T6;

T2b) {
std::cout << v << " "
}

std::cout << "\n";

}

Pas de range checking (attention aux buffers overflow/overrun)
Eléments contigus en mémoire = exploitation des caches possible

Utiliser « array » si tableau de taille fixe connue a la compilation

double T2[SZ]{ 0.5, -6.5, 3.2, 0.0, -9.1 };
char T3[1{"Hello"};
const char *T4{"Hello"};
char TS[1{’H’,%e’,1%,717,%07,°\0"};
int main(void)
{
double *T6 = new double[SZ*SZ];
// T6[3][2] = 0.0; // Non !
T6[3*%SZ+2] = 0.0; // Oui
*(T6+3%SZ+2) = 0.0; // Ous
delete[] T6;
for (uint32_t i = 0; i < SZ; ++i) {
cout << T2[i] << " "3
}
cout << "\n";
b
>
» Temps d’accés en O(1)
| 2
P array : connait sa taille (.size()); value semantic
>
» Utiliser « vector » si tableau de taille variable
» Eviter les tableaux POD si possible

-9.1 };

NI
v Les enums

#include <iostream>
int main(void)

{

enum ville_t {

londres,

paris, // 1
bruxelles = 5, // 5
amsterdam // 6

};

enum class pays_t {
france, // 0
espagne, // 1
belgique // 2

ville_t x = londres;
ville_t y = amsterdam;
if (xty >= 6) {

std::cout << "ok!\n";
}

std::cout << int(pays_t::france) << "\n";

> enum :

> enum

Déclaration de
constantes globales de
type int

class

Déclarations de
constantes dans |'espace
de nom du type

Pas de valeur int sans

cast explicite

NI .
v Les unions

int main(void)

{

}

union divers_t {

int i;
double d;
char c;
};
divers_t x {.i
x.d = 12.3;

= 5};

Tous les champs partagent |'espace
mémoire (sizeof (divers_t)>
taille du plus grand champ)

Stocker a part quel est le champ
actuellement utilisé
Deux utilisations :
» Réduire |'espace utilisé
» réinterpréter une valeur dans
un nouveau contexte

U Les structs

#include <cstdint>
int main(void)
{
struct personne_t {
const char *nom;
const char *prenom;
uint8_t age;
}s
using personnep_t = personne_t*; //
personne_t ichabod = {
"Ichabod",
"Crane"
35
};
personnep_t icha_p = &ichabod;

» Chaque champ a son propre espace
mémoire

» Utile pour stocker des valeurs en
relation

» sizeof (personne_t) >
sizeof (char*)*2+sizeof (uint8_t)

typedef personne_t* personne_t_p;

NI . .
v Les listes chainées

[i[}——{2[s}—{3[e}—X

#include <iostream>

using namespace std; node_t *tmp {head};

struct node_t { while (tmp != nullptr) {
int v; cout << tmp->v << " "j
node_t *next; tmp = tmp->next;

}; ¥

cout << ’\n’;
int main(void)

{ // Destruction de la liste
node_t *head {nullptr}; while (head != nullptr) {
for (int i = 3; i >= 1; --i) { node_t *next {head->next};
node_t *current {new node_t}; delete head;
current->v = i; head = next;
current->next = head;
head = current; }
¥

» Construction indispensable pour la gestion de structures dynamiques (piles, files,
Temps d'accés en O(n)

Réorganisation des éléments peu coliteuse

Eléments non contigus en mémoire = impact sur les performances

Disponible dans la bibliothéque standard STL (« list »)

vyvyvyy

Fin du cours

Alg. & Prog. 2 — X2BI040 v. 2, 2023-01-02 — 44 /44

