
Algorithmique et Programmation
Niveau 2

Frédéric Goualard

Laboratoire des Sciences du Numérique de Nantes, UMR CNRS 6004
O�ce #112-11

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 1/44

http://frederic.goualard.net/

Les types abstraits et leurs implémentations

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 20/44

Types abstraits

I Liste chaînée, tableau, chaîne de caractères : types concrets

I Type abstrait : on connaît l'interface d'utilisation, pas
l'implémentation

I Implémentation possible d'un type abstrait en terme de
plusieurs types concrets sans changer l'interface

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 21/44

Les piles

I Last-in-First-out (LIFO)
I Interface :

I push(pile,cat)
I cat = pop(pile)
I isempty(pile)
I [cat = top(pile)]

push pop

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 22/44

Utilisation des piles

I Algorithmes avec backtracking (branch and bound)

I Recherche en profondeur d'abord
A

F G

B C

ED

ABDE C FG

A
B
C

D
E
C
E
CC

F
GG

I Évaluation d'expressions arithmétiques

I . . .
3*sin(x+y)-z/2

infixe

3 x y + sin * z 2 / -

postfixe

Pile
des

opérandes

3

x

y
sin3

+

x y

2z

* /

-

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 23/44

Implémentation possible des piles

#include <iostream>
#include <exception>
#include <string>
using namespace std;

using cat_t = string;
cat_t lolcat {"lolcat"};

struct catstack_t {
cat_t *stack;
size_t availtop; // 1ere place libre
size_t maxsize;

};

catstack_t create_catstack(size_t maxsize)
{

catstack_t cs;
cs.stack = new cat_t[maxsize];
cs.maxsize = maxsize;
cs.availtop = 0;
return cs;

}

void delete_catstack(catstack_t& pile)
{

delete[] pile.stack;
}

bool isempty(const catstack_t& pile)
{

return pile.availtop == 0;
}

bool push(catstack_t& pile, cat_t c)
{
if (pile.availtop < pile.maxsize) {

pile.stack[pile.availtop++] = c;
return true;

} else {
return false;

}
}

cat_t pop(catstack_t& pile)
{
if (isempty(pile)) {

throw logic_error("pop sur pile vide!");
return lolcat;

} else {
cat_t c = pile.stack[--pile.availtop];
return c;

}
}

int main(void)
{
catstack_t stack_of_cats { create_catstack(100) };
push(stack_of_cats,"max");
push(stack_of_cats,"tigger");
push(stack_of_cats,"misty");
push(stack_of_cats,"oscar");

while (!isempty(stack_of_cats)) {
cat_t c = pop(stack_of_cats);
cout << c << "\n";

}
delete_catstack(stack_of_cats);

}

Disponible dans la STL : � stack �

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 24/44

Les �les (ou queues)

I First-In-First-Out (FIFO)

I Interface :
I put(queue,courrier)
I courrier=get(queue)
I isempty(queue)

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 25/44

Utilisation des �les

I Recherche en largeur d'abord dans des arbres

A

F G

B C

ED

A
CB

EDC
GFED
GFE
GF
G

A
B
C
D
E
F
G

I Gestion équitable de requêtes

I Simulation d'évènements physiques en préservant la
temporalité

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 26/44

Implémentation possible des �les

#include <iostream>
#include <exception>
#include <string>
using namespace std;

using courrier_t = string;
courrier_t courriervide { "vide" };

struct queue_t {
courrier_t *queue;
size_t tail; // 1ere place libre
size_t maxsize;

};

queue_t create_queue(size_t maxsize)
{

queue_t cq;
cq.queue = new courrier_t[maxsize];
cq.maxsize = maxsize;
cq.tail = 0;
return cq;

}

void delete_queue(queue_t& file)
{

delete[] file.queue;
}

bool isempty(const queue_t& file)
{

return file.tail == 0;
}

bool put(queue_t& file, const courrier_t& c)
{

if (file.tail < file.maxsize) {

file.queue[file.tail++] = c;
return true;

} else {
return false;

}
}

courrier_t get(queue_t& file)
{
if (isempty(file)) {

throw logic_error("get sur file vide!");
return courriervide;

} else {
courrier_t c = file.queue[0];
for (size_t i = 1; i < file.tail; ++i) {

file.queue[i-1] = file.queue[i];
}
--file.tail;
return c;

}
}

int main(void)
{
queue_t queue_of_courriers { create_queue(100) };
put(queue_of_courriers,"Prunelle");
put(queue_of_courriers,"De Mesmaeker");
put(queue_of_courriers,"Longtarin");
put(queue_of_courriers,"Fantasio");

while (!isempty(queue_of_courriers)) {
courrier_t c = get(queue_of_courriers);

cout << c << "\n";
}
delete_queue(queue_of_courriers);

}

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 27/44

Les arbres

I Représentation de données hiérarchisées

feuillefeuille

racine

nœud nœud

feuille

0

1

2

niveaux

I Arbres binaires, n-aires
I Dé�nition récursive (� un arbre est vide ou composé d'un

n÷ud racine et d'une liste de sous-arbres �ls �) ⇒ algorithmes
de traitement récursifs

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 28/44

Exploration des arbres

A

B C

D E

I Parcours pré�xe : A B C D E

I Parcours in�xe : B A D C E

I Parcours post�xe : B D E C A

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 29/44

Les graphes

1736 : les sept ponts de Königsberg � Euler

A

B

C

D

c d

g

e

ab

f

A

B

C

D

c,d

g

e

a,b
f

« Peut-on trouver un chemin traversant chaque pont une seule fois ? »

I Graphe (V ,E) :
I V : ensemble de n÷uds (A,B,C,D)
I E : ensemble d'arcs entre les n÷uds de V (a, b, c, d , e, f , g)

I Graphes complets, planaires, orientés, non orientés

I Nombreuses applications (TSP, routage circuits électroniques, reconstruction d'ADN,
. . .)

I Recherche d'un chemin eulérien : problème dans P (O(|V |+ |E |))

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 30/44

Application des graphes à la biologie

Shortest Superstring Problem (d'après
http://www.bioalgorithms.info)

I S = {ATC,AGT,CAG,TCC,CCA}
I Plus petite chaîne contenant tous les

éléments de S ?
I overlap(ATC,TCC) = 2

ATC
TCC

I Chemin Hamiltonien de valeur max.

ATC
TCC
CCA
CAG
AGT

Solution : ATCCAGT
I Problème NP-dur

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 31/44

http://www.bioalgorithms.info

Application des graphes à la biologie

Shortest Superstring Problem (d'après
http://www.bioalgorithms.info)

I S = {ATC,AGT,CAG,TCC,CCA}
I Plus petite chaîne contenant tous les

éléments de S ?
I overlap(ATC,TCC) = 2

ATC
TCC

I Chemin Hamiltonien de valeur max.

ATC
TCC
CCA
CAG
AGT

Solution : ATCCAGT
I Problème NP-dur

CCA

ATC

AGT

CAG

TCC

1

1

2

1

2

2

1

1

1

2

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 31/44

http://www.bioalgorithms.info

Application des graphes à la biologie

Shortest Superstring Problem (d'après
http://www.bioalgorithms.info)

I S = {ATC,AGT,CAG,TCC,CCA}
I Plus petite chaîne contenant tous les

éléments de S ?
I overlap(ATC,TCC) = 2

ATC
TCC

I Chemin Hamiltonien de valeur max.

ATC
TCC
CCA
CAG
AGT

Solution : ATCCAGT
I Problème NP-dur

CCA

ATC

AGT

CAG

TCC

1

1

2

1

2

2

1

1

1

2

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 31/44

http://www.bioalgorithms.info

Implémentation possible des graphes

A 0 1 1 1
B 1 0 0 1
C 1 0 0 1
D 1 1 1 0

A B C D

Matrice d'adjacence

A

B

C

D

c,d

g

e

a,b
f

I Représentation par un tableau à 2 dimensions :
I Coûteux si la matrice est symétrique
I Très coûteux si le graphe est très peu dense

I Solution ? Utilisation de listes chaînées

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 32/44

Implémentation possible des graphes

A 0 1 1 1
B 1 0 0 1
C 1 0 0 1
D 1 1 1 0

A B C D

Matrice d'adjacence

A

B

C

D

c,d

g

e

a,b
f

I Représentation par un tableau à 2 dimensions :
I Coûteux si la matrice est symétrique
I Très coûteux si le graphe est très peu dense

I Solution ? Utilisation de listes chaînées

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 32/44

Les tables de hachage (exemples)

Utilisation :

I Tableaux associatifs

I Ensembles

I . . .

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 33/44

Les tables de hachage

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 34/44

Fin du cours

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 44/44

