
Algorithmique et Programmation
Niveau 2

Frédéric Goualard

Laboratoire des Sciences du Numérique de Nantes, UMR CNRS 6004
O�ce #112-11

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 1/44

http://frederic.goualard.net/


Algorithmes

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 35/44



Notions de complexité des algorithmes

Comment trier ses cartes ?

Complexité temporelle

I Tri par insertion.

O(n2)

I Tri rapide.

O(n log n)

I Tri comptage.

O(n)

Détermination d'une fonction majorant le temps d'exécution ou
l'occupation spatiale en fonction de la longueur des entrées

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 36/44



Notions de complexité des algorithmes

Comment trier ses cartes ?

Complexité temporelle

I Tri par insertion.

O(n2)

I Tri rapide.

O(n log n)

I Tri comptage.

O(n)

Détermination d'une fonction majorant le temps d'exécution ou
l'occupation spatiale en fonction de la longueur des entrées

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 36/44



Notions de complexité des algorithmes

Comment trier ses cartes ?

Complexité temporelle

I Tri par insertion. O(n2)

I Tri rapide.

O(n log n)

I Tri comptage.

O(n)

Détermination d'une fonction majorant le temps d'exécution ou
l'occupation spatiale en fonction de la longueur des entrées

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 36/44



Notions de complexité des algorithmes

Comment trier ses cartes ?

Complexité temporelle

I Tri par insertion. O(n2)

I Tri rapide.

O(n log n)

I Tri comptage.

O(n)

Détermination d'une fonction majorant le temps d'exécution ou
l'occupation spatiale en fonction de la longueur des entrées

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 36/44



Notions de complexité des algorithmes

Comment trier ses cartes ?

Complexité temporelle

I Tri par insertion. O(n2)

I Tri rapide. O(n log n)

I Tri comptage.

O(n)

Détermination d'une fonction majorant le temps d'exécution ou
l'occupation spatiale en fonction de la longueur des entrées

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 36/44



Notions de complexité des algorithmes

Comment trier ses cartes ?

Complexité temporelle

I Tri par insertion. O(n2)

I Tri rapide. O(n log n)

I Tri comptage.

O(n)

Détermination d'une fonction majorant le temps d'exécution ou
l'occupation spatiale en fonction de la longueur des entrées

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 36/44



Notions de complexité des algorithmes

Comment trier ses cartes ?

Complexité temporelle

I Tri par insertion. O(n2)

I Tri rapide. O(n log n)

I Tri comptage. O(n)

Détermination d'une fonction majorant le temps d'exécution ou
l'occupation spatiale en fonction de la longueur des entrées

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 36/44



La complexité en pratique

Complexité Exemple

O(1) Accès à une case de tableau

O(n) Traversée d'une liste chaînée

O(n2) Tri par insertion

O(n3) Multiplication naïve de matrices

O(n5) �

O(2n) Calcul récursif naïf de la suite de Fibonacci

Complexité Taille n

temporelle 10 20 30 40 50 60

O(1) 1× 10−6s 1× 10−6s 1× 10−6s 1× 10−6s 1× 10−6s 1× 10−6s

O(n) 1× 10−5s 2× 10−5s 3× 10−5s 4× 10−5s 5× 10−5s 6× 10−5s

O(n2) 1× 10−4s 2× 10−4s 3× 10−4s 4× 10−4s 5× 10−4s 6× 10−4s

O(n3) 1× 10−3s 2× 10−3s 3× 10−3s 4× 10−3s 5× 10−3s 6× 10−3s

O(n5) 0.1s 3.2s 24.3s 1.7min 5.2min 13min

O(2n) 1× 10−3s 1s 17.9min 12.7 jours 35.7années 366 siècles

D'après : Computers and Intractability, A Guide to the Theory of NP-Completeness, M.R. Garey et D.S. Johnson,
W.H. Freeman & Company, 1979.

Attention : la complexité théorique ne préjuge pas des performances sur des problèmes
réels :

I Méthode du simplexe de complexité exponentielle
I Multiplication de matrices (n3 pour l'algorithme naïf et n2.37 pour l'algorithme

de Coppersmith-Winograd�mais gros coe�cient constant)

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 37/44



P = NP ?

I P : problème de décision (oui/non) dont on peut trouver la solution avec une
complexité polynomiale (une chaîne est-elle un palindrome ?)

I FP : problème non de décision dont on peut trouver la solution avec une
complexité polynomiale (multiplication de deux entiers)

I NP : problème de décision dont on peut véri�er la réponse positive avec une
complexité polynomiale sur une machine déterministe � une solution positive
peut être trouvée en temps polynomial sur une machine non déterministe
(existence d'un chemin hamiltonien)

I NP-complet : problème de décision en lequel tous les problèmes NP peuvent
être recodés en temps polynomial

I NP-dur : problème dont on peut trouver la solution avec une complexité
polynomiale sur une machine non déterministe � pas nécessairement un
problème de décision (TSP)

NP

NP-complet

NP-dur

P

P
NP

NP-complet

NP-dur

P=NPP ≠ NP

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 38/44



Tractabilité/Intractabilité

I Faire la di�érence entre la complexité d'un problème et la complexité d'un
algorithme particulier pour résoudre ce problème :

F (n) =


0 if n = 0

1 if n = 1

F (n− 1) + F (n− 2) otherwise

uint32_t F(uint32_t n)
{

switch (n) {
case 0: return 0;
case 1: return 1;
default: return F(n-1) + F(n-2);
}

}

F(5)

F(1) F(0)

F(4) F(3)

F(2)F(3) F(2) F(1)

F(2) F(1) F(1) F(0) F(1) F(0)

Complexité temporelle : O(2n)
Complexité spatiale : O(n)

Mais :
I F (48) > 232

I F (94) > 264

Donc l'espace mémoire est borné en
pratique et peut être considéré en
O(1) !

Le calcul de F (n) est un problème dans FP.

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 39/44



Tractabilité/Intractabilité

I Faire la di�érence entre la complexité d'un problème et la complexité d'un
algorithme particulier pour résoudre ce problème :

F (n) =


0 if n = 0

1 if n = 1

F (n− 1) + F (n− 2) otherwise

uint32_t F(uint32_t n)
{

if (n < 2) {
return n;

} else {
uint32_t F2 = 0;
uint32_t F1 = 1;
uint32_t fib;
for (uint32_t i = 2; i <= n; ++i) {

fib = F1 + F2;
F2 = F1;
F1 = fib;

}
return fib;

}
}

Complexité temporelle : O(n)
Complexité spatiale : O(1)

Mais :

I F (48) > 232

I F (94) > 264

Donc l'espace mémoire est borné en
pratique et peut être considéré en
O(1) !

Le calcul de F (n) est un problème dans FP.

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 39/44



Tractabilité/Intractabilité

I Faire la di�érence entre la complexité d'un problème et la complexité d'un
algorithme particulier pour résoudre ce problème :

F (n) =


0 if n = 0

1 if n = 1

F (n− 1) + F (n− 2) otherwise

uint32_t F(uint32_t n)
{

const double phi = (1+sqrt(5))/2; // Nombre d'or

return (uint32_t)round(pow(phi,n)/sqrt(5));
}

Complexité temporelle : O(log n)
Complexité spatiale : O(1)

Mais :

I F (48) > 232

I F (94) > 264

Donc l'espace mémoire est borné en
pratique et peut être considéré en
O(1) !

Le calcul de F (n) est un problème dans FP.

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 39/44



Tractabilité/Intractabilité

I Faire la di�érence entre la complexité d'un problème et la complexité d'un
algorithme particulier pour résoudre ce problème :

F (n) =


0 if n = 0

1 if n = 1

F (n− 1) + F (n− 2) otherwise

uint32_t F(uint32_t n)
{

const array<uint32_t,17> FT {
0, 1, 1, 2, 3, 5, 8,

13, 21, 34, 55, 89, 144,
233, 377, 610, 987

};
return FT[n];

}

Complexité temporelle : O(1)
Complexité spatiale : O(n)

Mais :

I F (48) > 232

I F (94) > 264

Donc l'espace mémoire est borné en
pratique et peut être considéré en
O(1) !

Le calcul de F (n) est un problème dans FP.

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 39/44



Tractabilité/Intractabilité

I Faire la di�érence entre la complexité d'un problème et la complexité d'un
algorithme particulier pour résoudre ce problème :

F (n) =


0 if n = 0

1 if n = 1

F (n− 1) + F (n− 2) otherwise

uint32_t F(uint32_t n)
{

const array<uint32_t,17> FT {
0, 1, 1, 2, 3, 5, 8,

13, 21, 34, 55, 89, 144,
233, 377, 610, 987

};
return FT[n];

}

Complexité temporelle : O(1)
Complexité spatiale : O(n)

Mais :

I F (48) > 232

I F (94) > 264

Donc l'espace mémoire est borné en
pratique et peut être considéré en
O(1) !

Le calcul de F (n) est un problème dans FP.

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 39/44



Choisir un algorithme

Que faire si un problème n'est pas dans P (ou dans P mais avec un algorithme
coûteux) ?

I Utiliser un algorithme exact si les instances sont petites
I Utiliser un algorithm approché (� heuristique �) o�rant un résultat proche de la

solution (ou la solution avec une certaine probabilité)
I Adapter l'algorithme aux cas particuliers d'instances considérées

Exemple : Traveling Salesman Problem (TSP) � circuit hamiltonien de coût
minimum

I Algorithme de Held-Karp (O(n22n))
Programmation dynamique (découpage du problème en plus petits problèmes)

I Algorithme glouton du plus proche voisin (O(n2))
I Branch and Bound

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 40/44



Programmation dynamique

Calcul de Fibonacci :

F(5)

F(1) F(0)

F(4) F(3)

F(2)F(3) F(2) F(1)

F(2) F(1) F(1) F(0) F(1) F(0)

uint32_t F_aux(uint32_t n, vector<uint32_t>& FT);

const uint32_t UNUSED = 4; // F(n) != 4 \forall n

uint32_t F(uint32_t n)
{ // Condition: n >= 1

vector<uint32_t> FT(n+1,UNUSED);
FT[0] = 0;
FT[1] = 1;
return F_aux(n,FT);

}

uint32_t F_aux(uint32_t n, vector<uint32_t>& FT)
{
if (FT[n] != UNUSED) {

return FT[n];
} else {

FT[n] = F_aux(n-1,FT) + F_aux(n-2,FT);
return FT[n];

}
}

I Découpage du problème en sous-problème

I Mémorisation du travail déjà e�ectué pour le réutiliser

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 41/44



Algorithmes gloutons

I Résolution d'un problème en faisant le meilleur choix local à chaque pas
I Choix d'une suite d'optimums locaux pour atteindre l'optimum global (pas

garanti)
TSP (cycle hamiltonien de coût minimal) :

N P

M

O

5

2

99

6

3

4

D’après http://www.cim.mcgill.ca/~sveta/COMP102/Lecture17.pdf

I Coût : 2+ 3+ 4+ 99 = 108
I Mais coût minimal : 2+ 6+ 4+ 5 = 17 !

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 42/44



Algorithmes gloutons

I Résolution d'un problème en faisant le meilleur choix local à chaque pas
I Choix d'une suite d'optimums locaux pour atteindre l'optimum global (pas

garanti)
TSP (cycle hamiltonien de coût minimal) :

N P

M

O

5

2

99

6

3

4

D’après http://www.cim.mcgill.ca/~sveta/COMP102/Lecture17.pdf

I Coût : 2+ 3+ 4+ 99 = 108
I Mais coût minimal : 2+ 6+ 4+ 5 = 17 !

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 42/44



Algorithmes gloutons

I Résolution d'un problème en faisant le meilleur choix local à chaque pas
I Choix d'une suite d'optimums locaux pour atteindre l'optimum global (pas

garanti)
TSP (cycle hamiltonien de coût minimal) :

N P

M

O

5

2

99

6

3

4

D’après http://www.cim.mcgill.ca/~sveta/COMP102/Lecture17.pdf

I Coût : 2+ 3+ 4+ 99 = 108
I Mais coût minimal : 2+ 6+ 4+ 5 = 17 !

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 42/44



Algorithmes gloutons

I Résolution d'un problème en faisant le meilleur choix local à chaque pas
I Choix d'une suite d'optimums locaux pour atteindre l'optimum global (pas

garanti)
TSP (cycle hamiltonien de coût minimal) :

N P

M

O

5

2

99

6

3

4

D’après http://www.cim.mcgill.ca/~sveta/COMP102/Lecture17.pdf

I Coût : 2+ 3+ 4+ 99 = 108
I Mais coût minimal : 2+ 6+ 4+ 5 = 17 !

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 42/44



Algorithmes gloutons

I Résolution d'un problème en faisant le meilleur choix local à chaque pas
I Choix d'une suite d'optimums locaux pour atteindre l'optimum global (pas

garanti)
TSP (cycle hamiltonien de coût minimal) :

N P

M

O

5

2

99

6

3

4

D’après http://www.cim.mcgill.ca/~sveta/COMP102/Lecture17.pdf

I Coût : 2+ 3+ 4+ 99 = 108
I Mais coût minimal : 2+ 6+ 4+ 5 = 17 !

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 42/44



Algorithmes gloutons

I Résolution d'un problème en faisant le meilleur choix local à chaque pas
I Choix d'une suite d'optimums locaux pour atteindre l'optimum global (pas

garanti)
TSP (cycle hamiltonien de coût minimal) :

N P

M

O

5

2

99

6

3

4

D’après http://www.cim.mcgill.ca/~sveta/COMP102/Lecture17.pdf

I Coût : 2+ 3+ 4+ 99 = 108
I Mais coût minimal : 2+ 6+ 4+ 5 = 17 !

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 42/44



Algorithmes gloutons

I Résolution d'un problème en faisant le meilleur choix local à chaque pas
I Choix d'une suite d'optimums locaux pour atteindre l'optimum global (pas

garanti)
TSP (cycle hamiltonien de coût minimal) :

N P

M

O

5

2

99

6

3

4

D’après http://www.cim.mcgill.ca/~sveta/COMP102/Lecture17.pdf

I Coût : 2+ 3+ 4+ 99 = 108
I Mais coût minimal : 2+ 6+ 4+ 5 = 17 !

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 42/44



Algorithmes gloutons

I Résolution d'un problème en faisant le meilleur choix local à chaque pas
I Choix d'une suite d'optimums locaux pour atteindre l'optimum global (pas

garanti)
TSP (cycle hamiltonien de coût minimal) :

N P

M

O

5

2

99

6

3

4

D’après http://www.cim.mcgill.ca/~sveta/COMP102/Lecture17.pdf

I Coût : 2+ 3+ 4+ 99 = 108
I Mais coût minimal : 2+ 6+ 4+ 5 = 17 !

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 42/44



Algorithmes gloutons

I Résolution d'un problème en faisant le meilleur choix local à chaque pas
I Choix d'une suite d'optimums locaux pour atteindre l'optimum global (pas

garanti)
TSP (cycle hamiltonien de coût minimal) :

N P

M

O

5

2

99

6

3

4

D’après http://www.cim.mcgill.ca/~sveta/COMP102/Lecture17.pdf

I Coût : 2+ 3+ 4+ 99 = 108

I Mais coût minimal : 2+ 6+ 4+ 5 = 17 !

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 42/44



Algorithmes gloutons

I Résolution d'un problème en faisant le meilleur choix local à chaque pas
I Choix d'une suite d'optimums locaux pour atteindre l'optimum global (pas

garanti)
TSP (cycle hamiltonien de coût minimal) :

N P

M

O

5

2

99

6

3

4

D’après http://www.cim.mcgill.ca/~sveta/COMP102/Lecture17.pdf

I Coût : 2+ 3+ 4+ 99 = 108
I Mais coût minimal : 2+ 6+ 4+ 5 = 17 !

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 42/44



Branch-and-bound

1 2 3

5 6

7 8 4
D'après : https://www.geeksforgeeks.org/branch-bound-set-3-8-puzzle-problem/

1 2 3

5 8 6

7 4

Minimum
de mouvements

I Déterminer une fonction de coût donnant une borne inférieure du nombre de
coups nécessaires

C (n÷ud) = profondeur+ nbre. d'éléments pas en place

I Explorer l'arbre de recherche en privilégiant le noeud avec C minimum
I Sauver C lorsque l'on arrive à une feuille solution → CS

I Ne pas explorer une branche si C > CS

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 43/44



Branch-and-bound

1 2 3

5 6

7 8 4
D'après : https://www.geeksforgeeks.org/branch-bound-set-3-8-puzzle-problem/

1 2 3

5 8 6

7 4

Minimum
de mouvements

1 2 3

5 6

7 8 4

D'après : https://courses.cs.washington.edu/courses/cse473/12au/slides/lect3.pdf

1 2

35 6

7 8 4

1 2 3

5 6

7 8 4

1 2 3

5 6

7 8

4

1 2

35 6

7 8 4

1 2 3

5 6

7 8

4

1 2 3

5 6

7 8 4

1 2 3

5 6

7

8

4

1

2

3

5 6

7 8 4

... ... ... ... ...

brute force

I Déterminer une fonction de coût donnant une borne inférieure du nombre de
coups nécessaires

C (n÷ud) = profondeur+ nbre. d'éléments pas en place

I Explorer l'arbre de recherche en privilégiant le noeud avec C minimum
I Sauver C lorsque l'on arrive à une feuille solution → CS
I Ne pas explorer une branche si C > CS

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 43/44



Branch-and-bound

1 2 3

5 6

7 8 4
D'après : https://www.geeksforgeeks.org/branch-bound-set-3-8-puzzle-problem/

1 2 3

5 8 6

7 4

Minimum
de mouvements

Branch and bound

I Déterminer une fonction de coût donnant une borne inférieure du nombre de
coups nécessaires

C (n÷ud) = profondeur+ nbre. d'éléments pas en place

I Explorer l'arbre de recherche en privilégiant le noeud avec C minimum
I Sauver C lorsque l'on arrive à une feuille solution → CS

I Ne pas explorer une branche si C > CS

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 43/44



Branch-and-bound

1 2 3

5 6

7 8 4
D'après : https://www.geeksforgeeks.org/branch-bound-set-3-8-puzzle-problem/

1 2 3

5 8 6

7 4

Minimum
de mouvements

1 2 3

5 6

7 8 4

D'après : https://courses.cs.washington.edu/courses/cse473/12au/slides/lect3.pdf

1 2

35 6

7 8 4

1 2 3

5 6

7 8 4

1 2 3

5 6

7 8

4

1 2 3

5 6

7 8 4

1 2 3

5 6

7

8

4

1

2

3

5 6

7 8 4

C=1+4=5C=1+2=3C=1+4=5

C=2+3=5 C=2+3=5 C=2+1=3

1 2 3

5 6

7

8

4

C=3+2=5
1 2 3

5 6

7

8

4

C=3+0=3

I Déterminer une fonction de coût donnant une borne inférieure du nombre de
coups nécessaires

C (n÷ud) = profondeur+ nbre. d'éléments pas en place

I Explorer l'arbre de recherche en privilégiant le noeud avec C minimum
I Sauver C lorsque l'on arrive à une feuille solution → CS
I Ne pas explorer une branche si C > CS

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 43/44



Fin du cours

Alg. & Prog. 2 � X2BI040 v. 1, 2022-11-14 � 44/44


