Algorithmique et Programmation
Niveau 2

Frédéric Goualard

Laboratoire des Sciences du Numérique de Nantes, UMR CNRS 6004
Office #112-11


http://frederic.goualard.net/

Algorithmes

Alg. & Prog. 2 — X2Bl040 v. 1, 2022-11-14 — 35/44



c Notions de complexité des algorithmes




c Notions de complexité des algorithmes

P Tri par insertion.




c Notions de complexité des algorithmes

» Tri par insertion. O(n?)




c Notions de complexité des algorithmes

» Tri par insertion. O(n?)

> Tri rapide.




c Notions de complexité des algorithmes

» Tri par insertion. O(n?)

» Tri rapide. O(nlogn)




c Notions de complexité des algorithmes

» Tri par insertion. O(n?)

» Tri rapide. O(nlogn)

> Tri comptage.



3 Notions de complexité des algorithmes

» Tri par insertion. O(n?)

» Tri rapide. O(nlogn)

» Tri comptage. O(n)

Détermination d'une fonction majorant le temps d’exécution ou
I'occupation spatiale en fonction de la longueur des entrées



I"L lexité ti
W La complexite en pratique

Complexité | Exemple
O(1) Accés a une case de tableau
O(n) Traversée d'une liste chainée
O(n?) Tri par insertion
O(n?) Multiplication naive de matrices
O(n®) —
O(2") Calcul récursif naif de la suite de Fibonacci
Complexité Taille n
temporelle 10 20 30 40 50 60
O(1) 1x107% 1x10% 1x10°% 1x10°%s 1x 107 %s 1x 107 %s
O(n) 1x107% 2x107% 3x10% 4x10%  5x105s 6 x 107 %s
O(n?) 1x107%s 2x107%s 3x107%s 4 x 107 %s 5x 107 %s 6 x 107 4s
O(n3) 1x1073s 2x1073 3x103s 4x103s 5x1073s 6 x 10735
O(n®) 0.1s 3.2s 24.3s 1.7min 5.2min 13min
O(2") 1x1073s 1s 17.9min 12.7 jours  35.7années 366 siécles

» Meéthode du simplexe de complexité exponentielle

» Multiplication de matrices (n® pour I'algorithme naif et n

2.37

de Coppersmith-Winograd—mais gros coefficient constant)

pour |'algorithme



NI
P =NP?

» P : probléme de décision (oui/non) dont on peut trouver la solution avec une
complexité polynomiale (une chaine est-elle un palindrome 7)

» FP : probléme non de décision dont on peut trouver la solution avec une
complexité polynomiale (multiplication de deux entiers)

> NP : probléme de décision dont on peut vérifier la réponse positive avec une
complexité polynomiale sur une machine déterministe — une solution positive
peut étre trouvée en temps polynomial sur une machine non déterministe
(existence d'un chemin hamiltonien)

» NP-complet : probléme de décision en lequel tous les problémes NP peuvent
&tre recodés en temps polynomial

» NP-dur : probléme dont on peut trouver la solution avec une complexité

polynomiale sur une machine non déterministe — pas nécessairement un
probléme de décision (TSP)

NP-dur NP-dur
NP-complet
NP B
P NP-complet

P = NP P=NP



c Tractabilité/Intractabilité

» Faire la différence entre la complexité d'un probléme et la complexité d'un
algorithme particulier pour résoudre ce probléme :

0 if n=20
F(n)=<1 ifn=1
F(n—1)+ F(n—2) otherwise

uint32_t F(uint32_t n)

switch (n) {

case 0: return 0;

case 1: return 1;

default: return F(n-1) + F(n-2);
}



c Tractabilité/Intractabilité

» Faire la différence entre la complexité d'un probléme et la complexité d'un
algorithme particulier pour résoudre ce probléme :

0 ifn=0
F(n)=41 ifn=1
F(n—1)+ F(n—2) otherwise

uint32_t F(uint32_t n)

{
if (n < 2) {
return n;
} else {
uint32_t F2 = 0;
uint32_t F1 = 1;
uint32_t fib;
for (uint32_t i = 2; i <= n; ++i) {
fib = F1 + F2;
F2 = Fi;
Fi = fib;
¥
return fib;
}



c Tractabilité/Intractabilité

» Faire la différence entre la complexité d'un probléme et la complexité d'un
algorithme particulier pour résoudre ce probléme :

0 ifn=0
F(n)=1<1 ifn=1
F(n—1)+ F(n—2) otherwise

uint32_t F(uint32_t n)

const double phi = (1+sqrt(5))/2; // Nombre d’or
return (uint32_t)round(pow(phi,n)/sqrt(5));



c Tractabilité/Intractabilité

» Faire la différence entre la complexité d'un probléme et la complexité d'un
algorithme particulier pour résoudre ce probléme :

0 ifn=0
F(n)=1<1 ifn=1
F(n—1)+ F(n—2) otherwise

uint32_t F(uint32_t n)

const array<uint32_t,17> FT {
0, 1, i, 2, 3 5,8, .
13, 21, 34, b5, 89, 144, Mais :

233, 377, 610, 987
}; > F(48) > 232
return FT[n]; > F(94) N 264
Donc I'espace mémoire est borné en

pratique et peut é&tre considéré en
o(1)!

¥



c Tractabilité/Intractabilité

» Faire la différence entre la complexité d'un probléme et la complexité d'un
algorithme particulier pour résoudre ce probléme :

0 ifn=0
F(n)=1<1 ifn=1
F(n—1)+ F(n—2) otherwise

uint32_t F(uint32_t n)

const array<uint32_t,17> FT {
0, 1, i, 2, 3 5,8, .
13, 21, 34, b5, 89, 144, Mais :

233, 377, 610, 987
}; > F(48) > 232
return FT[n]; > F(94) N 264
Donc I'espace mémoire est borné en

pratique et peut é&tre considéré en
o(1)!

¥



3 Choisir un algorithme

» Utiliser un algorithme exact si les instances sont petites

» Utiliser un algorithm approché (« heuristique ») offrant un résultat proche de la
solution (ou la solution avec une certaine probabilité)

» Adapter l'algorithme aux cas particuliers d'instances considérées

> Algorithme de Held-Karp (O(n?2"))
Programmation dynamique (découpage du probléme en plus petits problémes)

» Algorithme glouton du plus proche voisin (O(n?))
» Branch and Bound



3 Programmation dynamique

FG5)
/ uint32_t F_aux(uint32_t n, vector<uint32_t>& FT);
F4)

const uint32_t UNUSED = 4; // F(n) != 4 \forall n
) uint32_t F(uint32_t n)
/N { // Condition: n >= 1
F) F(0) vector<uint32_t> FT(n+1,UNUSED);
FT[0] = 03
FT[1] = 13
return F_aux(n,FT);

}

uint32_t F_aux(uint32_t n, vector<uint32_t>& FT)
{
if (FT[n] '= UNUSED) {
return FT[n];
} else {
FT[n] = F_aux(n-1,FT) + F_aux(n-2,FT);
return FT[n];

» Découpage du probléme en sous-probléme

» Meémorisation du travail déja effectué pour le réutiliser



c Algorithmes gloutons

» Résolution d'un probléme en faisant le meilleur choix local a chaque pas
» Choix d'une suite d'optimums locaux pour atteindre I'optimum global (pas
garanti)

D'aprés huep://usw.cim.ncgill .ca/"svata/CONPL02/Lecturai. pat



c Algorithmes gloutons

» Résolution d'un probléme en faisant le meilleur choix local a chaque pas
» Choix d'une suite d'optimums locaux pour atteindre I'optimum global (pas
garanti)

o

D'aprés huep://usw.cim.ncgill .ca/"svata/CONPL02/Lecturai. pat



c Algorithmes gloutons

» Résolution d'un probléme en faisant le meilleur choix local a chaque pas
» Choix d'une suite d'optimums locaux pour atteindre I'optimum global (pas
garanti)

o

D'aprés huep://usw.cim.ncgill .ca/"svata/CONPL02/Lecturai. pat



c Algorithmes gloutons

» Résolution d'un probléme en faisant le meilleur choix local a chaque pas
» Choix d'une suite d'optimums locaux pour atteindre I'optimum global (pas
garanti)

D'aprés heep://uus.cin.ncgill.ca/"svsta/CONP102/Loctursi?. pat



c Algorithmes gloutons

» Résolution d'un probléme en faisant le meilleur choix local a chaque pas
» Choix d'une suite d'optimums locaux pour atteindre I'optimum global (pas
garanti)

©))

D'aprés huep://usw.cim.ncgill .ca/"svata/CONPL02/Lecturai. pat



c Algorithmes gloutons

» Résolution d'un probléme en faisant le meilleur choix local a chaque pas
» Choix d'une suite d'optimums locaux pour atteindre I'optimum global (pas
garanti)

©))

D'aprés huep://usw.cim.ncgill .ca/"svata/CONPL02/Lecturai. pat



c Algorithmes gloutons

» Résolution d'un probléme en faisant le meilleur choix local a chaque pas
» Choix d'une suite d'optimums locaux pour atteindre I'optimum global (pas
garanti)

D'aprés huep://usw.cim.ncgill .ca/"svata/CONPL02/Lecturai. pat



c Algorithmes gloutons

» Résolution d'un probléme en faisant le meilleur choix local a chaque pas
» Choix d'une suite d'optimums locaux pour atteindre I'optimum global (pas
garanti)

D'aprés huep://usw.cim.ncgill .ca/"svata/CONPL02/Lecturai. pat



c Algorithmes gloutons

» Résolution d'un probléme en faisant le meilleur choix local a chaque pas
» Choix d'une suite d'optimums locaux pour atteindre I'optimum global (pas
garanti)

D'aprés huep://usw.cim.ncgill .ca/"svata/CONPL02/Lecturai. pat

> Coflit:2+3+4+99 =108



c Algorithmes gloutons

» Résolution d'un probléme en faisant le meilleur choix local a chaque pas
» Choix d'une suite d'optimums locaux pour atteindre I'optimum global (pas
garanti)

D'aprés heep://uus.cin.ncgill.ca/"svsta/CONP102/Loctursi?. pat

» Colit:2+3+4+99=108
» Mais colit minimal : 2+6+4+5=17!



c Branch-and-bound

Minimum
de mouvements




c Branch-and-bound

de mouvements

Minimum 5

brute force

3

- ~
NE— o|a|N
w »

1|2 2
5|63 5 6 6
7]8]a 7|8]a 8
1 l 2 1 1 i 3 1|2 i
5|63 s5[2]e 5|6 5|8 6
7|8]|a 7|8|a 7|8]a 7




3 Branch-and-bound

3
Minimum
——Minimum__,
de mouvements 5 8
7 4

» Déterminer une fonction de codit donnant une borne inférieure du nombre de
coups nécessaires

C(nceud) = profondeur 4 nbre. d'éléments pas en place

» Explorer I'arbre de recherche en privilégiant le noeud avec C minimum

v

Sauver C lorsque I'on arrive a une feuille solution — Cs
» Ne pas explorer une branche si C > Cs



Minimum
de mouvements

=5

C=1+4

=3
3

3+0.
2

=3

241

C=

2/ e

a

B

=5

3+2
2

8

243

Cc=
1

7

=

v Branch-and-bound

=1+4=5

@©
1

=5

243

=

2




Fin du cours

Alg. & Prog. 2 — X2BI040 v. 1, 2022-11-14 — 44/44



