M1 BIO-INFO Nantes Université
X2BI040 2022/2023

Feuille de travaux dirigés n° 2
Types abstraits

Exercice 2.1
On dispose du type « liste simplement chainée de doubles » dlistp_t et des fonctions suivantes :

dlistp_t add_node(double v, dlistp_t next). Crée un nceud contenant la valeur v et le relie a la liste
dont la téte est next;

double get_val(dlistp_t node). Retourne la valeur stockée dans le noeud identifié par node;

dlistp_t delete_head(dlistp_t head). Détruit le noeud pointé par head et retourne un pointeur vers le
reste de la liste.

1. Définir le type dstack_t « pile de doubles » en utilisant une représentation par liste chainée. On fera en
sorte de pouvoir connaitre le nombre de valeurs dans la pile avec une fonction de complexité temporelle

o(1);

2. Ecrire la fonction dstackp_t new_stack(void) (oudstackp_t estun type « pointeur sur piledstack_t »)
créant une nouvelle pile vide;

3. Ecrire la fonction bool isempty(dstackp_t st) retournant true sila pile est vide et false sinon;

4. Ecrire la fonction void push(double v, dstackp_t st) empilant la valeur v sur la pile st ;

5. Ecrire la fonction double pop(dstackp_t st) retirant la valeur sur le haut de la pile et la retournant; la
fonction devra afficher un message sur la sortie d’erreur et retourner NAN si la pile est vide lors de 'appel;

6. Ecrire un programme principal empilant trois valeurs sur une pile, puis les dépilant pour les afficher.

Exercice 2.2

On consideére les expressions suivantes :

3x+y— 2z
443+x7—-5/(34+4)+6
log(z + y)? — 22

1. Dessiner I’arbre correspondant a chaque expression;

2. Réécrire chaque expression en format préfixé.

Exercice 2.3
On souhaite manipuler des arbres binaires de caractéres.
1. Définir le type noeud d’arbre binaire de caractéres ctree_t et le type pointeur sur ctree_t, ctreep_t;

2. Ecrirelafonction ctreep_t create_ctree(char v, ctreep_t left, ctreep_t right) créantunarbre
avec une racine contenant v et des sous-arbres gauche et droit lef't et right;

3. Ecrire la fonction void delete_ctree(ctreep_t root) détruisant arbre de racine root;

Dans la suite, on considere le type « pointeur sur fonction prenant en entrée un paramétre de type char et ne
retournant rien » visit_node_f.

4. Ecrire la fonction void prefix(ctreep_t root, visit_node_f f) visitant ’arbre de racine root en
ordre préfixe et appliquant la fonction f sur la valeur stockée dans chaque nceud;

X2BI040 — Nantes Université Feuille de travaux dirigés n° 2 — Types abstraits 1/2



Ecrire la fonction void infix(ctreep_t root, visit_node_f f) visitant Parbre de racine root en
ordre infixe et appliquant la fonction f sur la valeur stockée dans chaque nceud;

Ecrire la fonction void postfix(ctreep_t root, visit_node_f f) visitant I'arbre de racine root en
ordre postfixe et appliquant la fonction f sur la valeur stockée dans chaque neceud;

Ecrire le programme principal créant ’arbre de la figure 1a, I'affichant en ordre préfixe, infixe, puis postfixe
et le détruisant.

B/A\C
D/ \E

(a) Arbre de caractéres pour I’exercice 2.3.

(b) Graphe pour I'exercice 2.4.

F1GURE 1 - Figures pour les exercices

Exercice 2.4

On souhaite manipuler des graphes orientés avec des poids entiers sur les arcs et une valeur de type « chaine de
caractéres » dans les noeuds.

1.

Définir le type graph_t permettant de représenter un tel graphe par sa matrice d’incidence. On définira
aussi le type pointeur sur graph_t, graphp_t;

Définir la fonction graphp_t graph_create(size_t V) créant une structure de graphe possédant au
maximum V noeuds;

Définir la fonction void graph_delete(graphp_t g) détruisant un graphe en mémoire;

Définir la fonction node_t graph_add_node(graphp_t g, const string& s) ajoutantunnceud au graphe
g de valeur s et retournant un identifiant du noeud créé permettant de le manipuler ultérieurement. La
chaine s sera copiée dans le noeud et 'on affichera un message sur la sortie d’erreur si le nombre de noeuds
créés est supérieur au maximum défini a la création du graphe;

. Définir la fonction void graph_add_edge(graphp_t g, node_t n1, node_t n2, int w) ajoutantune

aréte entre les noeuds n1 et n2 de poids w;

. Définir la fonction void graph_walk(graphp_t g, node_t n, node_fun f) effectuant une « marche »

dans le graphe g a partir du noeud n : on part de n et 'on se déplace sur le premier nceud accessible a partir
de n non encore traversé. La marche s’arréte quand on ne peut plus aller sur un autre nceud. A chaque
passage sur un nceud, on appelle la fonction f en lui passant en parametre la chaine de caractéres se
trouvant dans le nceud;

. Ecrire un programme principal créant le graphe de la figure 1b et effectuant une marche a partir du nceud

« ATC ».

X2BI040 — Nantes Université Feuille de travaux dirigés n° 2 — Types abstraits 2/2



