
M1 BIO-INFO Nantes Université

X2BI040 2022/2023

Feuille de travaux dirigés n
o

2

Types abstraits

Exercice 2.1
On dispose du type « liste simplement chaînée de doubles » dlistp_t et des fonctions suivantes :

dlistp_t add_node(double v, dlistp_t next). Crée un nœud contenant la valeur v et le relie à la liste

dont la tête est next ;

double get_val(dlistp_t node). Retourne la valeur stockée dans le nœud identi�é par node ;

dlistp_t delete_head(dlistp_t head). Détruit le nœud pointé par head et retourne un pointeur vers le

reste de la liste.

1. Dé�nir le type dstack_t « pile de doubles » en utilisant une représentation par liste chaînée. On fera en

sorte de pouvoir connaître le nombre de valeurs dans la pile avec une fonction de complexité temporelle

O (1) ;

2. Écrire la fonction dstackp_t new_stack(void) (ou dstackp_t est un type «pointeur sur pile dstack_t»)

créant une nouvelle pile vide ;

3. Écrire la fonction bool isempty(dstackp_t st) retournant true si la pile est vide et false sinon ;

4. Écrire la fonction void push(double v, dstackp_t st) empilant la valeur v sur la pile st ;

5. Écrire la fonction double pop(dstackp_t st) retirant la valeur sur le haut de la pile et la retournant ; la

fonction devra a�cher un message sur la sortie d’erreur et retourner NAN si la pile est vide lors de l’appel ;

6. Écrire un programme principal empilant trois valeurs sur une pile, puis les dépilant pour les a�cher.

Exercice 2.2
On considère les expressions suivantes :

3x+ y − 2z

4 + 3 ∗ 7− 5/(3 + 4) + 6

log(x+ y)2 − sin x
2z

1. Dessiner l’arbre correspondant à chaque expression ;

2. Réécrire chaque expression en format pré�xé.

Exercice 2.3
On souhaite manipuler des arbres binaires de caractères.

1. Dé�nir le type nœud d’arbre binaire de caractères ctree_t et le type pointeur sur ctree_t, ctreep_t ;

2. Écrire la fonction ctreep_t create_ctree(char v, ctreep_t left, ctreep_t right) créant un arbre

avec une racine contenant v et des sous-arbres gauche et droit left et right ;

3. Écrire la fonction void delete_ctree(ctreep_t root) détruisant l’arbre de racine root ;

Dans la suite, on considère le type « pointeur sur fonction prenant en entrée un paramètre de type char et ne
retournant rien » visit_node_f.

4. Écrire la fonction void prefix(ctreep_t root, visit_node_f f) visitant l’arbre de racine root en

ordre pré�xe et appliquant la fonction f sur la valeur stockée dans chaque nœud ;

X2BI040 — Nantes Université Feuille de travaux dirigés n
o

2 — Types abstraits 1/2



5. Écrire la fonction void infix(ctreep_t root, visit_node_f f) visitant l’arbre de racine root en

ordre in�xe et appliquant la fonction f sur la valeur stockée dans chaque nœud ;

6. Écrire la fonction void postfix(ctreep_t root, visit_node_f f) visitant l’arbre de racine root en

ordre post�xe et appliquant la fonction f sur la valeur stockée dans chaque nœud ;

7. Écrire le programme principal créant l’arbre de la �gure 1a, l’a�chant en ordre pré�xe, in�xe, puis post�xe

et le détruisant.

A

B C

D E

(a) Arbre de caractères pour l’exercice 2.3.

CCA

ATC

AGT

CAG

TCC

1

1

2

1

2

2

1

1

1

2

(b) Graphe pour l’exercice 2.4.

Figure 1 – Figures pour les exercices

Exercice 2.4
On souhaite manipuler des graphes orientés avec des poids entiers sur les arcs et une valeur de type « chaîne de
caractères » dans les nœuds.

1. Dé�nir le type graph_t permettant de représenter un tel graphe par sa matrice d’incidence. On dé�nira

aussi le type pointeur sur graph_t, graphp_t ;

2. Dé�nir la fonction graphp_t graph_create(size_t V) créant une structure de graphe possédant au

maximum V nœuds ;

3. Dé�nir la fonction void graph_delete(graphp_t g) détruisant un graphe en mémoire ;

4. Dé�nir la fonction node_t graph_add_node(graphp_t g, const string& s) ajoutant un nœud au graphe

g de valeur s et retournant un identi�ant du nœud créé permettant de le manipuler ultérieurement. La

chaîne s sera copiée dans le nœud et l’on a�chera un message sur la sortie d’erreur si le nombre de nœuds

créés est supérieur au maximum dé�ni à la création du graphe ;

5. Dé�nir la fonction void graph_add_edge(graphp_t g, node_t n1, node_t n2, int w) ajoutant une

arête entre les nœuds n1 et n2 de poids w ;

6. Dé�nir la fonction void graph_walk(graphp_t g, node_t n, node_fun f) e�ectuant une « marche »

dans le graphe g à partir du nœud n : on part de n et l’on se déplace sur le premier nœud accessible à partir

de n non encore traversé. La marche s’arrête quand on ne peut plus aller sur un autre nœud. À chaque

passage sur un nœud, on appelle la fonction f en lui passant en paramètre la chaîne de caractères se

trouvant dans le nœud ;

7. Écrire un programme principal créant le graphe de la �gure 1b et e�ectuant une marche à partir du nœud

« ATC ».

X2BI040 — Nantes Université Feuille de travaux dirigés n
o

2 — Types abstraits 2/2


