
M1 BIO-INFO Nantes Université

X2BI040 2022/2023

Feuille de travaux pratiques n
o

2

Types abstraits

Exercice 2.1
On souhaite manipuler des arbres binaires de caractères.

1. Dé�nir le type nœud d’arbre binaire de caractères ctree_t et le type pointeur sur ctree_t, ctreep_t ;

2. Écrire la fonction ctreep_t create_ctree(char v, ctreep_t left, ctreep_t right) créant un arbre

avec une racine contenant v et des sous-arbres gauche et droit left et right ;

3. Écrire la fonction void delete_ctree(ctreep_t root) détruisant l’arbre de racine root ;

Dans la suite, on considère le type « pointeur sur fonction prenant en entrée un paramètre de type char et ne
retournant rien » visit_node_f.

4. Écrire la fonction void prefix(ctreep_t root, visit_node_f f) visitant l’arbre de racine root en

ordre pré�xe et appliquant la fonction f sur la valeur stockée dans chaque nœud ;

5. Écrire la fonction void infix(ctreep_t root, visit_node_f f) visitant l’arbre de racine root en

ordre in�xe et appliquant la fonction f sur la valeur stockée dans chaque nœud ;

6. Écrire la fonction void postfix(ctreep_t root, visit_node_f f) visitant l’arbre de racine root en

ordre post�xe et appliquant la fonction f sur la valeur stockée dans chaque nœud ;

7. Écrire le programme principal créant l’arbre de la �gure 1, l’a�chant en ordre pré�xe, in�xe, puis post�xe

et le détruisant.

A

B C

D E

Figure 1 – Arbre de caractères pour l’exercice 2.1.

Exercice 2.2
L’objectif de cet exercice est d’implémenter le type « ensemble de couleurs ». Pour cela, on choisit d’utiliser une

table de hachage avec fonction de hachage imparfaite (voir �gure 2). Les questions ci-dessous vont vous permettre

de créer dans l’ordre les di�érentes structures nécessaires. On s’attachera à séparer les di�érentes structures et

leurs fonctionnalités associées dans des �chiers di�érents. On prendra aussi soin de masquer le plus possible les

implémentations concrètes des types abstraits.

Le type color_t

1. Dé�nir le type color_t représentant di�érentes couleurs (au moins une dizaine) ;

2. Écrire la fonction const char *color2str(color_t c) retournant la chaîne de caractères représentant

la couleur c (exemple : "BLEU" pour la couleur bleue).

X2BI040 — Nantes Université Feuille de travaux pratiques n
o

2 — Types abstraits 1/3



Le type collist_t

3. Dé�nir le type « liste doublement chaînée de couleurs » collist_t et son pointeur associé collistp_t ;

4. Écrire la fonction ajoutant un nœud de liste de couleur c entre les nœuds pointés par before et after,

collistp_t collist_add(color_t c, collistp_t before, collistp_t after) ;

5. Écrire la fonction void collist_remove(collistp_t n) détruisant le nœud n d’une liste chaînée en

prenant soin de reconstituer les chaînages ;

6. Écrire la fonction void collist_delete(collistp_t n) détruisant toute la liste chaînée de tête n ;

7. Écrire la fonction color_t collist_color_value(collistp_t n) retournant la couleur contenue dans

le nœud n ;

8. Écrire la fonction collistp_t collist_next(collistp_t n) retournant le nœud suivant n dans la liste ;

9. Écrire la fonction collistp_t collist_prev(collistp_t n) retournant le nœud précédent n dans la

liste ;

10. Écrire le programme créant une liste chaînée de quatre couleurs, a�chant les éléments de la liste à l’écran,

retirant le troisième nœud de la liste, a�chant la nouvelle liste en partant de la �n, puis la détruisant.

Le type colhash_t

11. Dé�nir le type « table de hachage de couleurs » colhash_t et son pointeur associé colhashp_t. La table

sera représentée par un tableau de pointeurs collistp_t, chaque élément du tableau pointant vers une

liste doublement chaînée de couleurs, éventuellement vide ;

12. Écrire la fonction colhashp_t colhash_create(size_t nbuckets) créant une table de hachage avec

nbuckets buckets (nombre de cases du tableau de pointeurs) ;

13. Écrire la fonction void colhash_delete(colhashp_t h) détruisant l’intégralité de la table de hachage

h ;

14. Écrire la fonction void colhash_add(colhashp_t h, color_t c) ajoutant la couleur c dans la table h ;

15. Dé�nir le type « itérateur sur table de hachage » colhash_iterator_t. Un itérateur est une structure

permettant d’énumérer les éléments de la table de hachage en se souvenant de la dernière position vue.

On dé�nira aussi le pointeur associé colhash_iteratorp_t ;

16. Écrire la fonction colhash_iteratorp_t colhash_begin(colhashp_t s) retournant un itérateur sur le

début de la table de hachage s ;

17. Écrire la fonction bool colhash_end(colhash_iteratorp_t iter) retournant true si l’itérateur iter
est arrivé au bout de la table et false sinon. On détruira l’itérateur passé en paramètre si la �n de la table

est atteinte ;

18. Écrire la fonction colhash_iteratorp_t colhash_next(colhash_iteratorp_t iter) retournant l’ité-

rateur iter mis à jour pour pointer sur la position suivante dans la table ;

19. Écrire la fonction color_t colhash_color_value(colhash_iteratorp_t iter) retournant la couleur

se trouvant à la position donnée par l’itérateur iter ;

20. Dé�nir le type colhash_iteratorp_or_color_t permettant de représenter soit une couleur, soit un ité-

rateur sur table de hachage ;

21. Écrire bool colhash_remove(colhashp_t h, colhash_iteratorp_or_color_t v), la fonction retirant

une couleur de la table ; la couleur peut être spéci�ée directement par un itérateur pointant sur la case à

retirer, ou indirectement en en donnant le nom. Dans ce dernier cas, on retirera la première occurrence

rencontrée ;

22. Écrire colhash_iteratorp_t colhash_contains(colhashp_t h, color_t c), la fonction retournant

un itérateur sur la première occurrence de la couleur c, ou nullptr si elle n’est pas présente dans la table.

L’itérateur sera créé dynamiquement dans la fonction et il reviendra à l’utilisateur de libérer la mémoire

correspondante ;

23. Écrire le programme créant une table de hachage avec trois buckets et ajoutant six couleurs dedans. On

a�chera ensuite un message si la table contient la couleur VERT, puis l’on a�chera l’ensemble des couleurs

stockées dans la table ; on retirera ensuite une des couleurs stockées et l’on réa�chera toutes les couleurs

de la nouvelle table.

X2BI040 — Nantes Université Feuille de travaux pratiques n
o

2 — Types abstraits 2/3



Le type colset_t

24. Dé�nir le type « ensemble de couleurs » colset_t et son pointeur associé colsetp_t. L’ensemble sera

implémenté par une table de hachage pour pouvoir déterminer rapidement si un élément est déjà présent.

On s’assurera de pouvoir dé�nir une fonction cardinal() en O (1) ;

25. Écrire la fonction colsetp_t colset_create(void) créant un ensemble de couleurs vide ;

26. Écrire la fonction void colset_delete(colsetp_t s) détruisant un ensemble ;

27. Écrire la fonction bool colset_add(colsetp_t s, color_t c) ajoutant une couleur c à un ensemble

s. La fonction retournera true si la couleur n’était pas déjà présente et false sinon ;

28. Écrire la fonction bool colset_remove(colsetp_t s, color_t c) retirant la couleur c de l’ensemble

s. La fonction retournera true si la couleur était bien présente et false sinon ;

29. Écrire la fonction bool colset_contains(colsetp_t s, color_t c) retournant true si l’ensemble s
contient la couleur c et false sinon ;

30. Écrire la fonction size_t colset_cardinal(colsetp_t s) retournant le nombre d’éléments de s ;

31. Dé�nir le type « itérateur sur ensemble de couleurs» colset_iterator_t et son pointeur associé colset_iteratorp_t ;

32. Écrire la fonction colset_iteratorp_t colset_begin(colsetp_t s) retournant un itérateur sur le dé-

but de l’ensemble ;

33. Écrire la fonction bool colset_end(colset_iteratorp_t iter) retournant true si l’itérateur iter est

à la �n de l’ensemble et false sinon. On détruira l’itérateur iter s’il est arrivé à la �n de l’ensemble ;

34. Écrire la fonction colset_iteratorp_t colset_next(colset_iteratorp_t iter) retournant l’itéra-

teur iter mis à jour pour pointer sur l’élément suivant de l’ensemble ;

35. Écrire la fonction color_t colset_color_value(colset_iteratorp_t iter) retournant la couleur de

l’élément pointé par l’itérateur iter ;

36. Écrire le programme créant un ensemble de couleurs vide, ajoutant cinq couleurs, dont l’une par deux fois,

a�chant l’ensemble des éléments de l’ensemble et son cardinal, puis a�chant un message si l’ensemble

contient la couleur NOIR, retirant l’une des couleurs présentes, puis réa�chant tous les éléments et en�n,

détruisant l’ensemble.

0

1

2

3

k

ROUGE

BLEU PUCE NOIR

VERT

Figure 2 – Table de hachage de l’exercice 2.2

X2BI040 — Nantes Université Feuille de travaux pratiques n
o

2 — Types abstraits 3/3


