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EXERCICE 1.

Soit (X, )nen une suite de variables aléatoires indépendantes et de méme loi uniforme
sur [0,1]. Pour tout n € N, on pose

1 n
Sn =| =5 K }/1, = i Vi e N.
nz avec € 1

=1

1) Montrer qu’il existe une constante c telle que /n(S, — ¢) convergence en loi. Préciser
la limite et la valeur de c.

2) Montrer qu’il existe une constante d telle que /n(e5" — d) convergence en loi. Préciser
la limite et la valeur de d.

3) Parmi les suites suivantes lesquelles convergent en loi :
a) vVnSn(S, —¢)
b) S.(S. —¢)
c) nS(Sn —¢)

Justifier votre réponse et préciser la limite lorsqu’elle existe.

EXERCICE 2.

Rappel : Pour tout n > 0, on a

Ir) = / =% dp=(n— L)
R+

Soit (X,Y’) un vecteur aléatoire dont la loi admet pour densité

F(z,y) = €7 1ppy(z) Ir+ (y)
1) Vérifier que la fonction f définit bien la densité d’une loi de probabilité.
2) Calculer la densité de la loi de Y. En déduire E(Y).
3) Quelle est la loi conditionnelle de X sachant ¥ ?
4) Calculer I'espérance conditionnelle de X sachant ¥ .

5) En déduire l’espérance de X.
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EXERCICE 3.

Soit (Fy,)ner une suite de fonctions définie par
P'I?.ZT

F.(8) = e’”;+1’ Vz € Ret Vn € N.

1) Montrer que, pour tout n € N, la fonction F, est une fonction de répartition.
2) Montrer que la loi de répartition F, admet pour densité
ne‘n.a:
ful@) = ——.
RN
3) Pour tout réel z, calculer la limite de F,,(z) quand n tend vers +oo.

4) Soit (X, )nen une suite de variables aléatoires. On suppose que pour tout n € N, la loi
de X, admet pour fonction de répartition F,,.
La suite (X, )nen converge t-elle en loi quand n — oo ? Si oui préciser la limite.

Soit U une variable aléatoire. La loi de U est la loi uniforme sur [0, 1]. Pour tout entier

n, on pose
it U
==l
Zn n n(l—U)

5) Pour tout n € N, calculer la densité de la loi de Z,. En déduire que les variables
aléatoires Z,, et X,, ont la méme loi.

6) Montrer que (Z,)nen cOnverge presque surement vers zero.

Soit (U, )nen une suite de variables aléatoires indépendantes et de méme loi uniforme
sur [0, 1]. Pour tout n € N, on pose

1 U,
W, = =1 n
: nn(l—Un)

7) Justifier que les variables aléatoires (W,,).en sont indépendantes et pour tout n € N,
W, et X,, ont méme loi.
8) Calculer pour tout € > 0 et tout n € N, la probabilité p, = P(|W,| > ¢).

9) La série Z pr est-elle convergente ?
nEN
10) La suite (W, )nen converge-t-elle presque surement ? si oui préciser la limite.

Pour tout n € N, on pose Y, = e""».
11) Montrer que la suite (Y, ).en est une suite de variables aléatoires indépendantes et de
méme loi. Préciser la densité de la loi commune.

n
12) La suite S, = }—LZ Y; converge-t-elle presque siirement 7 si oul préciser la limite.

=1
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Exercice 1
Soit (X, || - ||) un espace normé et soit (z,)n>1 une suite de Cauchy dans (X, | - ||).
On suppose que (ivn)nz1 admet une sous suite convergente, montrer que toute la suite converge.

Exercice 2
Soit B un espace de Banach et X,Y deux ouverts de B qui sont denses dans B. Montrer que X NY

est encore ouvert et dense de B.

Exercice 3 On considére I’application linéaire de T : ¢2 — ¢? définie par
Zn

T(xn)nel = (yn)nZI avec Yn = Tr;'

1. Montrer que T est continue.
2. Soit (™ la suite de 2 dont les n premiers éléments valent 1 puis tous les autres 0 :

2™ =1pour1<k<n, z{™=0pourn< k.

Montrer que Tz(™ converge dans £2 vers un éléments de £2 qui n'est pas dans I'image de T.

3. Qu’en déduit-on sur I'image de T'?

Exercice 4
Soit B un espace de Banach muni de la norme || - ||.

1. Soit ¥ un sous espace vectoriel fermé de B tel que Y # B et soit z € B\ Y.
(a) Montrer que d = inf{|jz —y|, y €Y} > 0.
(b) Montrer qu'il existe z € Y tel que ||z — z|| < 2d.
(c) Soit & = ;2=%. Montrer que ||£ — y|| > 1/2 pour tout y € Y.

lle—z1"
2. On suppose dorénavant que B est de dimension infini et on pose

B={zeB||z] <1}.

(a) Utiliser la question précédente pour construire itérativement une suite (z,)n>; d’éléments
de B vérifiant

() [0 —2nll > 1/2 pour n £m.
(b) En déduire que B n’est pas compact.

3. On choisit B = L*(0, 1) muni de la norme infini. Donner un exemple d’une suite (@n)n>1
qui satisfasse (%).
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Pour tout la suite, on considére 2 un ensemble mesurable de R¢ et 1’espace de Hilbert
complexe L*(£2) des (classes de) fonction(s) de carré intégrables (définies presque partout),
et muni du produit scalaire usuel noté (.,.).

Exercice 1 — On considére et une fonction mesurable K € L?(Q x ). On définit alors

I’opérateur

Tx: LXQ) — LX(Q)
u = Txu avec Tyu(z)= [, K(z,y)u(y)dy

On suppose qu'’il exists une constante M > 0 telle que

sup /]K(z,y)[dy <M et sup /IK(:v,y)ldx <M
zeR4 yER?

Montrer que pour tout u € L?, on a || Txul < M |[u.

Exercice 2 — Calculer l'intégrale 0°° T%T & l'aide de la formule des résidus.
Exercice 3 — Pour la suite on considére une fonction ¢ : [0, R[— R continue et telle

que q(t) > 1 pour tout ¢ € [0, co[. On rappelle que ’espace de Hilbert H} %ef H([0,R],C)
est constitué des fonctions f € C%([0, R],C) pour lesquelles il existe une fonction f’ €
L2([0, R],C) telle que f(z) = f(0) + Jy f'(t)dt. On note pour f, g € HE,

R R — =
(= [ (FOP+dfOPd  Balfo) = [ (FOTO +aO5070) d

1) Vérifier que B est un produit scalaire sur H}z. On admet que la norme qu’il définit
est équivalente a la norme usuelle sur H!([0, R], C).

2)  a) Démontrer qu'il existe une constante cg telle que pour tout v € H([0, R],C),

on a
sup |v(z)| < crRV Qr(v).

z€[0,R]

b) En déduire que Wg & {ve HE, v(R) =0} est un sous espace vectoriel fermé de
HE.

3) a) Montrer qu’il existe un unique fr € Wg tel que

Vv € Wg, v(0) = Br(v, fr)



(on pourra utiliser le théoréme de Riesz).
b) Montrer que fr(0) > 0. On pose alors Yg = fr/fr(0).
c) Montrer que pour tout v € Wg tel que v(0) =1, on a Qr(v) > Qr(¥R).

4) Pour la suite on introduit les fonctions ¢, x : [0,c0[—> R solutions de I’équation
différentielle —y” + qy = 0, et qui vérifient

#(0) =0, ¢'(0) =1 respectivement x(0) =1, x'(0) = 0.

a) Montrer que ¢'(z)¢(z) = [ ((¢'(£))% + q(t)(#(2))?) dt.
b) En déduire que ¢ est strictement croissante.
¢) Montrer que x/¢ est décroissante sur R

5) Pour R > 0 on pose Ag = x(R)/#(R) et g = X — AR®.
a) Montrer que pour tout ¢t > 0 on a g > 0.
b) Montrer que £g décroit sur [0, R] et en déduire que {g(t) < 1 sur [0, R].

6) a) Démontrer que pour tout v € Wg tel que v(0) = 1, Qr(v) > Qr(ér). (On
pourra écrire v = v — {g + &g et calculer Br(v — &g, &R))-
b) En déduire que g = Yg.
¢) Démontrer que Qr(ér) = Ag.
d) Montrer que pour tout ¢ fixé, la fonction R — ¥g(t) est croissante majorée par 1.

7) On pose pour la suite pour tout ¢ € [0,00[, ¥(t) = impg_00 Yr(t).
a) Montrer que pour tout t > 0, 0 < ¥(t) < 1, que ¥ est décroissante et que 9 satisfait
I'équation différentielle —y” + qy = 0.
b) Montrer que pour tout R > 1,

R
/0 (O dt < Qr(tr) < M.

¢) En déduire que ¥ € L(R,).
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Exercice 1 : Polynomes de Tchebycheff 11

1. On note U, le polynéme de Tchebycheff de seconde espece de degré n défini sur [—1, 1]
et tel que U,(1) = 1. La famille (U,), est orthogonale dans L2(—1,1) pour le poids
w(z) = v/1 — 2. Calculer Uy, U; et U,.

2. Montrer que U, peut s’obtenir par la formule :

_ sin((n + 1)acos(z))
Un(z) = sin(acos(z))

3. Montrer que pour tout z et n > 1 :
Up1(z) = 22U (z) — Up—1(2),

En déduire ’expression de Us.

4. Soit f(z) = /1 — z2. Donner I’expression du polynéme de degré 2 de meilleure approxi-
mation de f au sens L?2.

Exercice 2 : Schémas pour ’équation de transport
On cherche & approcher approcher numériquement les solutions de I’équation de transport :

Owu + ad,u = 0,
(0, &) = uo(z),

ol a € R* et uy est une fonction donnée.
1. Vérifier que u(t, z) = up(x — at) est solution du probléme.

2. On considere les 3 schémas numériques suivants :

n+l _ ., n n n
up T =y —c(uf —u,),
c
n+l _ ,n__ “((mn _ N
U, =Yy 2(“i+1 Ui,
2

(4 (A
P =l — (ul, —ulg) + E(u?“ - 2u? +ul,),

u; 2

NP z __ alt
ol l'on a posé ¢ = 4.

Etudier la consistance et la stabilité au sens L? de ces 3 schémas.

3. Que peut-on conclure 7



Exercice 3 : Un probléme de réaction-diffusion
On s’intéresse au probléme suivant :

BV +m(t,z).V — 08,V =0, (t,7) € R* x [0,1], (1)
V(t,0)=a, t >0, )
V(t,1)=b, t >0, (3)
V(0,2) = Volz),z € [0,1]. (4)

a, b et o sont des constantes positives, V; est une fonction de classe C*°([0, 1]).

On considére par ailleurs que m(t, z) est une fonction continue de V telle que 0 < m(¢t,z) < 1.
Pour approcher ce probléme, on utilise une méthode des différences finies en posant t" = nAt,
z; = iAz. On notera V;* Papproximation de V (", z;) obtenue et m? = m(t", z;).

1. Quelle est la nature de I’équation (1)?

2. Dans un premier temps, on décide d’utiliser le schéma numérique suivant :

V- a — 2Vt VS

iy oy 0.
g R Ag?

(a) Dessiner le stencil de ce schéma puis montrer qu'il est consistant et préciser son
ordre.

(b) Monter que ce schéma est stable au sens de la norme L™ sous la condition CFL :

At < L (5)

~ min;(m?) + 20/Az?’

Que peut-on déduire des deux résultats précédents?

3. On s’intéresse maintenant au schéma numérique suivant :

3‘/1:n+1 o 4I/zn + ‘/in—l
2At

Vn+1 . 2vn+l = V'ri—f—l
o i+1 ¢! i—1

A7 =0.

ny/n+1
+mgVt —

4. Dessiner le stencil de ce schéma puis montrer qu’il est consistant et préciser son ordre.
5. Montrer que pour calculer V™! on doit résoudre un systéme linéaire que 1’on précisera.

6. Vérifier que la matrice de ce systéme linéaire est & diagonale fortement dominante et
conclure quant a la stabilité du schéma numérique.

7. Quel peuvent étre les avantages et les inconvénients de ce schéma par rapport au précédent ?



Université de Nantes Master 1 de Mathématiques
UE : Calcul Différentiel et Géométrie

Examen du 21 juin 2013
Durée : 3h

Exercice 1

Soit pi,...,p, une famille de vecteurs différents de I’espace R?® muni de la norme euclidienne
|- |l et $?:={z € R®: ||z|| = 1} la sphére unité. Notons

1@ =Y llz = pil?

la somme des carrés des distances entre z € R3? et p;.
1. Calculer la différentielle Df(z), z € R3.
2. Trouver les points z € S? qui minimisent f(z).

Exercice 11

Soit 7 : I = R? une courbe gauche bi-réguliére définie sur un intervalle I C R telle que
1 1
v(0) = (1,0,0), +'(0) = —\/-5(1,1, 1) et +"(0)=(0,0,1).

1. Montrer que si la torsion de <y est nulle, alors (/) est contenu dans un plan. Déterminer
une équation de ce plan.

2. Montrer que, réciproquement, si y(/) est contenu dans un plan, alors la torsion de ~y est
nulle.

Exercice III

On considére une surface C* de révolution S C R® paramétrée par
X(0,t) = (r(t) cos(8), r(t) sin(8), 2(t)),
ot (¢,60) € I x [0,27], I C R est un intervalle, et ¢ — (r(¢), 2(t)) est une courbe plane C®
paramétrée par longueur d’arc.
1. Déterminer pour quelles valeurs de # la courbe t — X (6,t) est une géodésique de S.

2. Déterminer pour quelles valeurs de ¢ la courbe § — X (6,t) est une géodésique de S.

Exercice 111

1. On considére ’ensemble
2
S = {(x,y,z) eR3: (\/a:2+y2 ~2) +22-1= 0}.

(a) Montrer que S est une surface C* de R3.
(b) Trouver une fonction 2m-périodique r € C*°(R, R) telle que
S = {(r(p) cos(0), r(p) sin(6),sin(¢)) : ¢,6 € R}.

(c) A P’aide de (b) donner une paramétrisation P : U — V de S ot U C R? est un
ouvert et V' C S est un voisinage de M = (1,0,0) € S. Justifier la réponse.

TS V.P.



(d) Expliciter les coefficients

oP 0P oP 0P OoP 8P
E(9:¢)=<%,5§> ) F(9;<P)=<‘8—9“,’5(;> ) G(9,¢)=<%78—w> .
R3 R3 R:

de la premiere forme fondamentale de S dans cette paramétrisation.

(e) Calculer Paire de S. Justifier la réponse.




