
INFORMATIQUE

Semestre 2

Année universitaire 2014-2015

Examen d'informatique

Nom de I'U.E.: Informatique
Code de I'U.E. : L3 SEN-X6SEOIO
Date de L'examen : Mai 2015
Durée: 2hOO
Documents autorisés: OUI
Calculatrice autorisée: OUI

Semestre 2
Session 1UNIVERSITÉ DE NANTES

U.F.R. des Sciences et des Techniques

S.E.V.E. Bureau des Examens

Thème du sujet
Page web sur les règnes de rois de France.

Description générale de la page à écrire:
La fenêtre est divisée en 2 cadres utilisant la même feuille de style «PresentationRois.css» (voir annexe).
Les 3 fichiers html à écrire sont
«DépartRois.html», «Index.htrnl» et «Rois.html». Le Ier fichier découpe la fenêtre en 2 cadres, le 2ème est
affiché dans le cadre de gauche et le 3ème dans le cadre de droite (voir captures d'écran).

Fichier «Rois.html»
Le cadre de droite ne contient aucune fonction javascript. On y trouve le titre du document, l'image à
l'ouverture se trouvant dans le fichier «rois_de_france.jpg» et un formulaire contenant une zone texte
affichée sous l'image destinée à recevoir les dates de règne de chaque roi. Cette zone texte utilise le style
défini par «Regne» dans la feuille de style. L'image sera changée par les événements utilisateur survenant
dans le cadre de gauche.

Fichier « Index.html»
Le cadre de gauche propose à l'utilisateur de choisir, grâce à 3 menus déroulants, un roi de France. Chaque
menu correspond à une dynastie.
Menu «Valois» : François 1er, Charles IX et Henri III
Menu «Bourbons» : Louis XIII, Louis XIV, Louis XV, Louis XVI et Louis XVIII
Menu «Orléans» : Louis Philippe
Le bouton «Annuler» remet les deux cadres dans I'état initial.
Le choix dans un des 3 menus affiche dans le cadre de droite l'image correspondant au roi sélectionné ainsi
que ses dates de règnes dans la zone texte en dessous de l'image. Les noms des fichiers d'images sont
construits en juxtaposant le nom de la dynastie, le numéro d'ordre dans le menu et .jpg.
Exemple «Bourbons2.jpg» contient l'image de Louis XIV

Questions:
Partie html

I. Écrire le code html du fichier «DépartRois.html»
2. Écrire le code html du fichier «Rois.html»
3. Écrire le code html du fichier « Index.html»

Partie javascript
On utilisera pour les dates de règnes les tableaux de chaînes de caractères suivants:
RegneValois=I"","1515 à 1547","1560à 1574","1574à 1589"];
RegneBourbons=I"","1610à 1643 ","1643 à 1715","1715 à 1774", "1774à 1792","1814à 1824"J;
RegneOrleans=["" ,"1830 à 1848"];

Les fonctions javascript à écrire doivent respecter les consignes suivantes:
• Lorsque les 3 menus ne présentent aucun choix de rois, l'image à droite est «rois_de_france.jpg»
• Les menus déroulants ne peuvent pas montrer simultanément des choix de rois de dynasties

différentes.

4. Programmer le bouton «Annuler» (événement et fonction javascript)
5. Écrire le code javascript de la fonction AfficheRoi(n) qui affiche l'image et les dates de règne dans

le cadre de droite. n est une variable contenant le numéro du menu dans lequel s'est fait le choix.
Écrire les appels de cette fonction.

page 1/2

Captures d'écran - annexe

Choisir un roi
dans sa dynastie

3menus Valois

bouton
«Annuler»

Choisir un roi I'

dans sa dynastie I
, Valois ·1

~ (H.n:' III: Jr I

choix d'index 3
dans le menu
valois

Bourbons

Orléans
(Orléans

Règnes des rois de France

zone texte, vide
à l'ouverture

Règnes des rois de France

imagedu fichier
«valois3.jpg»

Règne:1574 à 1589
....________ dates du

règne du roi
sélectionné

Feuille de style (fichier «PresentationRois.css»)

body{
background-color: #FFEOBC;
font-family: times;
font-size: 12pt;
}

h1 { text-align: left;
color: #FF7AOO;
font-size: 16pt;
}

h2 {text-align: center;
color: #EEOOFF;
font-size: 24pt;
}

.Regne {
font-size: 14pt;
color: #006600;
background-color:#FFF7CA;
border-style: solid;
border-tap-width: 1px;
border-left-width: 1px;
border-bottom-width: 1px;
border-right-width:1 px;
border-color: #FFF7CA;
text-align: center;

} page 2/2

Session 2
Rattrapages

Licence Informatique
X5IOOlO

Université de Nantes
2014-2015

Examen de seconde seSSIOn

Durée : 90 minutes.
Imprimés et notes de cours / TD / TP autorisés. Tout le reste est interdit.
Il rr'eat pas obligatoire de faire les exercices dans l'ordre.

Exercice 1 (Polymorphisme - 4 points)
Considérons le code Java suivant:

import java. io . *;

class A {
/* A */
public String method(double x, double y) {
return liA";

/* B */
public String method(int x, int y) {
return "B";

class B extends A {
/* c */
public String method(int x, double y) {
return IICII;

/» D */
public String method(int x, int y) {
return "DI1;

/* E */
public String method(char x, char y) {

return "Ell;

class C extends B {
/* F */
public String method (char x, char y) {

return "Fil;
}

class Main {
public static void main(String [J args) {

A a = new C();
System.out.println(a.method('9', '9'));

1

Sachant qu'un valeur de type char est automatiquement convertible vers les types int et double,
et qu'une valeur de type int est automatiquement convertible vers le type double, écrivez le
résultat affiché (A, B, C, D, E ou F) en justifiant votre réponse. Les détails de votre réponse
doivent décrire ce qui se passe à la compilation (2 points) et lors de l'exécution (2 points).

Exercice 2 (Le lexique linguistique - 16 points)
Nous introduisons un système de gestion d'un lexique linguistique. Un lexique linguistique est,
dans notre exemple, un ensemble de verbes et de noms. L'utilisateur ajoute les noms sous la
forme de leur singulier. La forme plurielle est ajoutée automatiquement. L'utilisateur ajoute les
verbes sous la forme de leur infinitif. Les formes conjuguées sont ajoutées automatiquement. La
forme plurielle d'un nom et les formes conjuguées d'un verbe sont appelés ses formes fléchies.

Notre lexique linguistique est représenté par la classeLexiqueLinguistique. Celle-cidétient les
listes des noms et des verbes.

Ces listes, ainsi que les données des formes fléchies,peuvent être libérées de la mémoire pour être
enregistrées dans le fichier associé au lexique. Elles peuvent ensuite être rechargées en mémoire
pour ainsi être relues.

Il existe également deux modes de fonctionnement :
le mode de préparation des données dans lequel l'utilisateur peut ajouter des mots. En
mode de préparation des données, quand l'utilisateur demande les formes fléchies d'un
mot, elles sont calculées à ce moment-là. et ne sont pas stockées en mémoire. (gain en
espace, coût en temps) ;
le mode d'exploitation des données où toutes les formes fléchies ont été calculées et
enregistrées. En mode d'exploitation, quand l'utilisateur demande les formes fléchiesd'un
mot, elles sont directement lues en mémoire et retournées sans calcul (gain en temps, coût
en espace). Dans ce mode, il n'est pas possible d'ajouter de nouveau mot.

La classe LexiqueLinguistique contient les attributs suivants, les méthode étant commentées
dans le code :

L'attribut nomsest la liste des noms, l'attribut verbes la liste des verbes.
L'attribut formesFlechiesNom contient, pour chaque nom, laliste des ses formes fléchies.
L'attribut formesFlechiesVerbe contient, pour chaque verbe, la liste des ses formes
fléchies.

Le code source de la classe LexiqueLinguistique est le suivant:

import java. io . *;
import java. u t il i e ;

class LexiqueLinguistique
{

protected List <String> noms = new Ar ra yLis t c St r ing > ();
protected List <String> verbes = new Ar rayLi st x St r ing > ();
protected MapcS't r ing , List <String» formesFlechiesNom
= new HashMap<String, Li s t cSt r irrg »();

protected MapcSt ring . List<String» formesFlechiesVerbe
= new HashMap<String, List<String»();

protected ByteArrayOutputStream fI uxSortie = new ByteArrayOutputStream ();

// Par simplification, on fait abstraction des try/catch d'exceptions
// pourtant preferables dans les methodes suivantes.

/*
* Enregistre les donnees des quatre attributs de la classe et les
* lib ere de Ia memoire.
*/

2

protected void enregistreDonnees ()
{

fi uxSortie. reset ();
ObjectOutputStream f1uxObjet new ObjectOutputStream (fluxSortie);
fluxObjet. writeObject (noms);
fi uxObjet . writeObject (verbes):
f1uxObjet. writeObject (formesFlechiesNom);
fluxObjet. writeObject (formesFlechiesVerbe):

/*
* Relit en memoire les donnees qui ont ete e n r e q i s t r e e s par enregistreDonnee.
*/

protected void litDonnees ()
{

By teArr ay l np u tSt.r ea.m fluxEntree
= new By t eArr a.y Iu pu t St r earn (fi uxSortie. toBy t eArr ay ());

ObjectlnputStream f1uxObjet = new ObjectlnputStream (fluxEntree);
noms = (List<String» fluxObjet.readObject();
verbes = (List<String» fluxObjet.readObject();
formesFlechiesNom = (HashMap<String, Li s t cSt ring ») fl uxObjet . readObject ();
formesFlechiesVerbe = (HashMap<String, List <String ») fluxObjet. readObject ();

/*
* Ajoute un nom dans la liste des noms. Si jamais les donnees ont
* ete liberees de la memoire, elles sont relues. Si les attributs
* formesFlechiesNom et formesFlechies Verbe sont non vides, l' ajout
* 17, 'est pas possible (mode d'exploitation).

** Retourne ur a i si et seulement si I 'ajout a ete possible.

** La methode compareTolgnoreCase retourne 0 si et seulement s i les
* deux strings testees sont identiques, modulo l a casse,
*/

public boolean ajou t.eNorn (String leNom)
{

if(noms = null)
litDonnees ();

if(! fo rmes El ech iesNo m . isEmpty () II ! formesFlechiesVerbe. isEmpty ())
return false;

for (String nom : noms)
if(nom.compareTolgnoreCase(leNom) 0)

return false;
noms, add (leNom);
return true;

/*
* Meme principe que ajouteNom, mais pour les verbes.
*/

public boolean aj o u t eVe rb e (String leVerbe)
{

if(verbes = null)
litDonnees();

if(! fo r rnes Pl ech iesNo m . isEmpty ()
return false;

for (String verbe : verbes)
if (verbe, compareTolgnoreCase (

return false;
v er b e s v add] leVerbe);
return true;

II ! formesFlechiesVerbe. isEmpty ())

leVerbe) 0)

3

/*
* Libere toutes les donnees de l a memoire en les enregistrant.
*/

public void libereMemoire ()
{

if (noms = null && verbes
return;

enregistreDonnees ();

null)

}

/*
* Calcule toutes les formes flechies. Il convient de n o t e r que les
* [o+m es flechies sont i c i calculees en anglais et de facon
* t r e s simplifiees. Le mode d ' exploitation est active.
*/

public void modeExploitation ()
{

if(noms = null && verbes = null)
litDonnees ();

for (String nom : noms)
formesFlechiesNom.put(nom, Arrays.asList(nom+ "s"));

for(String verbe: verbes
formesFlechiesVerbe. put(verbe, Arrays. asList (verbe,

verbe + "ed",
verbe+"ing");

}

* Efface toutes les [o rm es flechies calculees. Le mode de
* preparation des donnees est active.
*/

public void modePreparation ()
{

if(noms = null && verbes
litDonnees();

formesFlechiesNom. clear ();
formesFlechiesVerbe. clear ();

null)

/*
* Renvoie les formes flechies d 'un nom. En mode de preparation des
* donnees, elles sont calculees. En mode d'exploitation, les formes
* flechies sont obtenues a p a r t i r des donnees de formesFlechiesNom.
*/

public List <String> formesFlechiesNom (String leNorn)
{

if(noms = null)
litDonnees ();

if(formesFlechiesNom. isEmpty () && forrnesFlechiesVerbe. isEmpty ())
{

for(String nom: noms)
if (nom. compareTolgnoreCase (leNom) 0)

return Arrays.asList(nom+ "s");
return null;

return formesFlechiesNom. get (leNom);
}

/*
* Meme p r i n c i p e que formesFlechiesNom, mais p our les verbes.

4

*/
public List<String> formesFlechiesVerbe (String leVerbe)
{

if(verbes = null)
litDonnees ();

i f(formesFlechiesNom. isEmpty () && formesFlechiesVerbe. isEmpty ())
{

for (String verbe : verbes)
if (verbe. compareTolgnoreCase (leVerbe) = 0)

return Arrays.asList(verbe, verbe + "ed", verbe + "ing");
return null;

return formesFlechiesVerbe. get (leVerbe);

Le programme suivant permet de tester la classe LexiqueLinguistique
import java. util. List;

class Test
{

public static void main (String [] a r gs
{

List <String> resultatFormesFlechies;
LexiqueLinguistique lexique = new LexiqueLinguistique ();
lexique. ajouteVerbe ("walk");
lexique .libereMemoire ();

resultatFormesFlechies = lexique. formesFlechiesVerbe ("walk");
if(resultatFormesFlechies != null)

fort String forme: resultatFormesFlechies
System.out.println(forme);

else
System. out. println ("walkuestuunuIDotuinconnuu I");

lexique. ajouteVerbe ("pick");
lexique. modeExploitation ();
lexique.ajouteNom("floor");
lexique .libereMemoire ();

resultatFormesFlechies = lexique. formesFlechiesVerbe ("pick");
if(resultatFormesFlechies != null)

fort String forme resultatFormesFlechies
System.out.println(forme);

else
System. out. println ("pickuestuunuIDotuinconnuu I");

resultatFormesFlechies = lexique. formesFlechiesNom ("floor");
if(resultatFormesFlechies != null)

for (String forme : resultatFormesFlechies
System.out.println(forme);

else
System. out. println ("flooruestuunuIDotuinconnuu I");

L'exécution du programme fournit le résultat suivant

walk
walked
walking

5

pick
picked
picking
floor est un mot inconnu!

1. Le code de la classe LexiqueLinguistique compile (si on ajoute les try/catch d'excep­
tions) et fonctionne correctement. Mais quelque chosene va pas au niveau de la concep­
tion. Expliquer quel est le problème en vous justifiant. (2 points)

2. Proposer un pattern qui peut s'appliquer à la classe LexiqueLinguistique dans le but
de la simplifier.Justifiez votre choix. (4 points)

3. Écrire en Java votre pattern (8 points), et modifieren conséquencela classeLexiqueLinguistique
(2 points).

6

