INFORMATIQUE

Semestre 2

L l Année universitaire 2014-2015
Nom de I’'U.E. : Informatique Semestre 2

UN'VERS'Té DE NANTES Code de I’U.E. : L3 SEN-X6SE010 Session 1
U.F.R. des Sciences et des Techniques DEElte e heei | It
— Durée : 2h00
S.E.V.E. Bureau des Examens Documents autorisés : QU]

Examen d’informatique Calculatrice autorisée : QUI

Theéme du sujet
Page web sur les regnes de rois de France.

Description générale de la page a écrire :

La fenétre est divisée en 2 cadres utilisant la méme feuille de style «PresentationRois.css» (voir annexe).
Les 3 fichiers html a écrire sont

«DépartRois.html», «Index.html» et «Rois.html». Le 1< fichier découpe la fenétre en 2 cadres, le 2éme est
affiché dans le cadre de gauche et le 3¢me dans le cadre de droite (voir captures d’écran).

Fichier «Rois.html»

Le cadre de droite ne contient aucune fonction javascript. On y trouve le titre du document, I'image a
"ouverture se trouvant dans le fichier «rois_de_france.jpg» et un formulaire contenant une zone texte
affichée sous I"image destinée a recevoir les dates de régne de chaque roi. Cette zone texte utilise le style
défini par «Regne» dans la feuille de style. L’image sera changée par les événements utilisateur survenant
dans le cadre de gauche.

Fichier « Index.html»
Le cadre de gauche propose a I'utilisateur de choisir, grace 4 3 menus déroulants, un roi de France. Chaque
menu correspond a une dynastie.
Menu «Valeis» : Francois ¢, Charles IX et Henri 111
Menu «Bourbons» : Louis XIII, Louis XIV, Louis XV, Louis XVI et Louis XVIII
Menu «Orléans» : Louis Philippe
Le bouton «Annuler» remet les deux cadres dans I’état initial.
Le choix dans un des 3 menus affiche dans le cadre de droite 1’image correspondant au roi sélectionné ainsi
que ses dates de régnes dans la zone texte en dessous de I’image. Les noms des fichiers d’images sont
construits en juxtaposant le nom de la dynastie, le numéro d’ordre dans le menu et jpg.
Exemple «Bourbons2.jpg» contient I’image de Louis XIV

Questions :
Partie html
I Ecrire le code html du fichier «DépartRois.html»
2. Ecrire le code htm! du fichier «Rois.html»
3. Ecrire le code html du fichier « Index.html»

Partie javascript
On utilisera pour les dates de régnes les tableaux de chaines de caractéres suivants :
RegneValois=["","1515 a 1547","1560 4 1574","1574 4 1589"|;
RegneBourbons=|"","1610a 1643 ","1643 a 1715","1715 a4 1774", "1774 4 1792" " 1814 a 1824"|;
RegneOrleans=|"", "1830 a 1848"];
Les fonctions javascript a écrire doivent respecter les consignes suivantes :
* Lorsque les 3 menus ne présentent aucun choix de rois, I’image a droite est «rois_de_france jpg»
* Les menus déroulants ne peuvent pas montrer simultanément des choix de rois de dynasties
différentes.

4. Programmer le bouton «Annuler» (événement et fonction javascript)

5. Ecrire le code Javascript de la fonction AfficheRoi(n) qui affiche I’image et les dates de régne dans
le cadre de droite. n est une variable contenant le numéro du menu dans lequel s’est fait le choix.
Ecrire les appels de cette fonction.

page 1/2

Captures d’écran - annexe

Choisir un roi Régnes des rois de France
dans sa dynastie

Leen ix

image du fichier
«rois_de_france.jpg»

/

Valoi:
3 menus
déroulants alois 3]

Bourbons

Bourbons &)

Orléans

Orléans s }

Annuler)
lesut LSy

e

bouton
«Annuler»

zone texte, vide
a 'ouverture

Choisir un roi Régnes des rois de France

choix d'index 3 dans sa dynastie
dans le menu

valois \ Valels
| Henrim 3|
| PRS-

image du fichier

«valois3.jpg»
Bourbens
Bourbons L:}
Orléans
Oriéans &
T Régne :1574 a 1589
N —
regne du roi
sélectionné

Feuille de style (fichier «PresentationRois.css»)

body {
background-color: #FFEOBC,; .Regne {
font-family: times; font-size: 14pt;
font-size: 12pt; color: #DD6600;
} background-color:#FFF7CA;
border-style: solid;
h1 { text-align: left; border-top-width: 1px;
color: #FF7AQ0; border-left-width: 1px;
font-size: 16pt; border-bottom-width: 1px;
} border-right-width:1px:
h2 { text-align: center; border-color: #FFF7CA;
color: #EEQOFF; text-align: center;
font-size: 24pt; }

} page 2/2

Session 2
Rattrapages

Licence Informatique Université de Nantes
X510010 2014-2015

Examen de seconde session

Durée : 90 minutes.
Imprimés et notes de cours / TD / TP autorisés. Tout le reste est interdit.
Il n’est pas obligatoire de faire les exercices dans l’ordre.

Exercice 1 (Polymorphisme - 4 points)

Considérons le code Java suivant :

import java.io.x;

class A {
/x A x/
public String method (double x, double y) {
return "A";
}

/s B s/
public String method(int x, int y) {
return "B";

}

}

class B extends A {
/x Cx/

public String method(int x, double y) {
return, "C" ;
}

/x D x/

public String method(int x, int y) {
return "D ;

}

/* E x/
public String method(char x, char y) {
return "E";

}

}

class C extends B {
A & 27

public String method(char x, char y) {
return "F";

}
}
class Main {
public static void main(String [] args) {
A a = new C();
System.out.println(a.method(°9’, ’9’));
}

}

Sachant qu’un valeur de type char est automatiquement convertible vers les types int et double,
et qu’une valeur de type int est automatiquement convertible vers le type double, écrivez le
résultat affiché (A, B, C, D, E ou F) en justifiant votre réponse. Les détails de votre réponse
doivent décrire ce qui se passe a la compilation (2 points) et lors de 'exécution (2 points).

Exercice 2 (Le lexique linguistique - 16 points)

Nous introduisons un systeme de gestion d’un lexique linguistique. Un lexique linguistique est,
dans notre exemple, un ensemble de verbes et de noms. L’utilisateur ajoute les noms sous la
forme de leur singulier. La forme plurielle est ajoutée automatiquement. L’utilisateur ajoute les
verbes sous la forme de leur infinitif. Les formes conjuguées sont ajoutées automatiquement. La
forme plurielle d’'un nom et les formes conjuguées d’un verbe sont appelés ses formes fléchies.

Notre lexique linguistique est représenté par la classe LexiqueLinguistique. Celle-ci détient les
listes des noms et des verbes.

Ces listes, ainsi que les données des formes fléchies, peuvent étre libérées de la mémoire pour étre
enregistrées dans le fichier associé au lexique. Elles peuvent ensuite étre rechargées en mémoire
pour ainsi étre relues.

Il existe également deux modes de fonctionnement :

— le mode de préparation des données dans lequel 'utilisateur peut ajouter des mots. En
mode de préparation des données, quand ['utilisateur demande les formes fléchies d’un
mot, elles sont calculées a ce moment-la et ne sont pas stockées en mémoire. (gain en
espace, colt en temps);

— le mode d’exploitation des données ou toutes les formes fléchies ont été calculées et
enregistrées. En mode d’exploitation, quand I'utilisateur demande les formes fléchies d’un
mot, elles sont directement lues en mémoire et retournées sans calcul (gain en temps, coiit
en espace). Dans ce mode, il n’est pas possible d’ajouter de nouveau mot.

La classe LexiqueLinguistique contient les attributs suivants, les méthode étant commentées
dans le code :
— L’attribut noms est la liste des noms, I’attribut verbes la liste des verbes.
— L’attribut formesFlechiesNom contient, pour chaque nom, la liste des ses formes fléchies.
— L’attribut formesFlechiesVerbe contient, pour chaque verbe, la liste des ses formes
fléchies.

Le code source de la classe LexiqueLinguistique est le suivant :

import java.io.x*;
import java.util.x;

class LexiqueLinguistique
{
protected List<String> noms = new ArrayList<String >();
protected List<String> verbes = new ArrayList<String >();
protected Map<String , List<String>> formesFlechiesNom
= new HashMap<String , List<String >>();
protected Map<String , List<String>> formesFlechiesVerbe
= new HashMap<String, List<String >>();
protected ByteArrayOutputStream fluxSortie = new ByteArrayOutputStream ();

// Par simplification, on fait abstraction des try/catch d’ezceptions
// pourtant preferables dans les methodes suivantes.

/*
* Enregistre les donnees des quaire atiributs de la classe et les
* libere de la memoire.

*/

protected void enregistreDonnees ()
{
fluxSortie.reset ();
ObjectOutputStream fluxObjet = new ObjectOutputStream(fluxSortie);
fluxObjet.writeObject (noms);
fluxObjet . writeObject (verbes);
fluxObjet.writeObject (formesFlechiesNom):
fluxObjet . writeObject (formesFlechiesVerbe);

}
/*

* Relit en memoire les donnees qui onl ele enregisirees par enregisireDonnee.
*/
protected void litDonnees ()
{
ByteArraylnputStream fluxEntree
= new ByteArrayInputStream(fluxSortie.toByteArray ());
ObjectInputStream fluxObjet = new ObjectInputStream (fluxEntree);
noms = {(List<String>) fluxObjet.readObject ();
verbes = (List<String>) fluxObjet.readObject ();
formesFlechiesNom = (HashMap<String, List<String>>) fluxObjet.readObject ();
formesFlechiesVerbe = (HashMap<String , List<String>>) fluxObjet.readObject ();

/*

* Ajoute un nom dans la liste des noms. Si jamais les donnees ont
x ete liberees de la memoire, elles sont relues. Si les atiributs
* formesFlechiesNom et formesFlechiesVerbe sont non wvides, [’ajout
* n’est pas possible (mode d’ezploitation).

£

* Retourne vrai si et seulement si [’ajout a ete possible.

*

* La methode compareTolgnoreCase retourne 0 si et seulement si les
* deux strings testees sont identiques, modulo la casse.

4
public boolean ajouteNom(String leNom)
{

if(noms = null)

litDonnees ();
if(!formesFlechiesNom.isEmpty () || !formesFlechiesVerbe.isEmpty())

return false;
for(String nom : noms)
if (nom.compareTolgnoreCase(leNom) = 0)
return false;
noms.add(leNom);
return true;

}
/*

* Meme principe que ajouteNom, mais pour les verbes.
4
public boolean ajouteVerbe(String leVerbe)

{

if(verbes == null)
litDonnees ();
if(!formesFlechiesNom.isEmpty() || !formesFlechiesVerbe.isEmpty())

return false;
for(String verbe : verbes)
if(verbe.compareTolgnoreCase(leVerbe) = 0)
return false;
verbes.add(leVerbe };
return true;

/*

* Libere toutes les donnees de la memoire en les enregistrant.
*/
public void libereMemoire ()
{

if(noms == null & verbes == null)

return:
enregistreDonnees ()

}
/*

* Calcule toutes les formes flechies. Il convient de noter que les
* formes flechies sont ici calculees en anglais et de facon

* tres simplifiees. Le mode d’exploitation est aclive.

B
public void modeExploitation ()
{

if(noms = null && verbes = null)

litDonnees ();

for(String nom : noms)
formesFlechiesNom.put(nom, Arrays.asList(nom + "s"));

for(String verbe : verbes)
formesFlechiesVerbe.put(verbe, Arrays.asList(verbe,
verbe + "ed",
verbe + "ing"));

}
/*

* Efface toutes les formes flechies calculees. Le mode de
* preparation des donnees est active.

*/
public void modePreparation ()
{

if(noms =— null && verbes = null)

litDonnees ();
formesFlechiesNom . clear ();
formesFlechiesVerbe.clear ();

}

/*
* Renvoie les formes flechies d’un mom. En mode de preparation des
* donnees, elles sont calculees. FEn mode d’ezploitation, les formes

x flechies sont obtenues a partir des donnees de formesFlechiesNom.
*/
public List<String> formesFlechiesNom (String leNom)
{
if(noms = null)
litDonnees ();
if(formesFlechiesNom.isEmpty () && formesFlechiesVerbe.isEmpty ())
{
for(String nom : noms)
if(nom.compareTolgnoreCase(leNom) = 0)
return Arrays.asList(nom + "s");
return null;

}

return formesFlechiesNom .get(leNom);

}
/*

* Meme principe que formesFlechiesNom , mais pour les wverbes.

2%
public List<String> formesFlechiesVerbe(String leVerbe)

{

if(verbes = null)
litDonnees ()
if(formesFlechiesNom.isEmpty() && formesFlechiesVerbe.isEmpty ())

{
for(String verbe : verbes)
if(verbe.compareTolgnoreCase(leVerbe) =— 0)
return Arrays.asList(verbe, verbe + "ed". verbe + "ing");
return null;
}
return formesFlechiesVerbe.get(leVerbe);

}

Le programme suivant permet de tester la classe LexiqueLinguistique :

import java.util.List;

class Test
i
public static void main(String|[] args)
{
List <String> resultatFormesFlechies;
LexiqueLinguistique lexique = new LexiqueLinguistique ();
lexique .ajouteVerbe("walk");
lexique .libereMemoire (};

resultatFormesFlechies = lexique.formesFlechiesVerbe("walk");
if(resultatFormesFlechies != null)
for(String forme : resultatFormesFlechies)
System.out. printlin(forme);
else
System.out.println("walk,est,un motyinconnu,!");

lexique .ajouteVerbe("pick");
lexique . modeExploitation ();
lexique .ajouteNom("floor");
lexique . libereMemoire ();

resultatFormesFlechies = lexique.formesFlechiesVerbe(“pick");
if(resultatFormesFlechies != null)
for (String forme : resultatFormesFlechies)
System.out.println{ forme);
else
System.out. println("pick_est ungmot,inconnu,!");

resultatFormesFlechies = lexique.formesFlechiesNom("floor");
if(resultatFormesFlechies != null)
for(String forme : resultatFormesFlechies)
System.out. println{ forme);
else
System.out.println("floor,est, unymotyinconnuy!");

L’exécution du programme fournit le résultat suivant :

walk
walked
walking

pick

picked

picking

floor est un mot inconnu!

1. Le code de la classe LexiqueLinguistique compile (si on ajoute les try/catch d’excep-
tions) et fonctionne correctement. Mais quelque chose ne va pas au niveau de la concep-
tion. Expliquer quel est le probléme en vous justifiant. (2 points)

2. Proposer un pattern qui peut s’appliquer & la classe LexiqueLinguistique dans le but
de la simplifier. Justifiez votre choix. (4 points)

3. Ecrire en Java votre pattern (8 points), et modifier en conséquence la classe LexiqueLinguistique
(2 points).

