A. Ensembles et cardinaux

1. Définir en extension les ensembles suivants :

$$\left\{ x \in N, x < 20, x^2 - x = 2[5] \right\}$$

$$\left\{ 2 * x, x \in N, x < 20, x^2 - x = 2[5] \right\}$$

$$\left\{ x * y, x \in N, y \in N, 10 < y < 20, 1 < x < 10, y = 5[x * (x - 1)] \right\}$$

$$\left\{ y \in N, \exists x \in N, x < 20, x^2 - x = 2[5], y = 2 * x \right\}$$

2. Définir en intension les ensembles suivants :

- 3. Montrer que $\overline{A \cap B} = \overline{A} \cup \overline{B}$ et $\overline{A \cup B} = \overline{A} \cap \overline{B}$ (lois de De Morgan).
- 4. Montrer que $A \cap \overline{B} = A \cap \overline{C} \iff A \cap B = A \cap C$
- 5. Montrer que $A \subseteq B \Leftrightarrow A \cap B^c = \emptyset \Leftrightarrow A^c \cap B^c = B^c \Leftrightarrow A^c \cup B = \Omega$
- 6. Montrer que $\#(A \cup B) + \#(A \cap B) = \#A + \#B$
- 7. Simplifier l'expression

$$\begin{array}{l} \left(\overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \right) \cup \left(\overline{A} \cap \overline{B} \cap \overline{C} \cap D \right) \cup \left(\overline{A} \cap \overline{B} \cap C \cap D \right) \cup \left(\overline{A} \cap B \cap \overline{C} \cap D \right) \cup \\ \left(A \cap B \cap \overline{C} \cap D \right) \cup \left(A \cap \overline{B} \cap \overline{C} \cap D \right) \cup \left(A \cap \overline{B} \cap \overline{C} \cap \overline{D} \right) \cup \left(\overline{A} \cap B \cap C \cap D \right) \cup \\ \left(A \cap B \cap C \cap D \right) \cup \left(A \cap \overline{B} \cap C \cap D \right) \cup \left(\overline{A} \cap B \cap C \cap \overline{D} \right) \end{array}$$

- 8. Un journal organise un sondage parmi ses abonnés et obtient 1000 réponses parmi lesquelles il y a : 312 hommes, 470 personnes mariées, 525 étudiant(e)s, 42 étudiants (de sexe masculin), 147 étudiant(e)s marié(e)s, 86 hommes mariés et 25 étudiants mariés (de sexe masculin).

 Montrer que le dépouillement a été mal fait.
- 9. Préciser si chacune des affirmations ci-dessous est vraie ou fausse en en donnant une preuve ou un contreexemple :

$$A \cap B = A \Leftrightarrow A \subset B$$

 $A \cup B = A \Leftrightarrow A \supset B$
 $A \cap B = A \cup B \Leftrightarrow A = B$

10. En utilisant les fonctions et procédures ci-dessous, ainsi que des structures conditionnelles ou répétitives, écrire une fonction calculant l'intersection de ses arguments.

11. Formaliser dans la théorie des ensembles le problème :

En lançant k dés à six faces (comportant les nombres 1, 5, 9, 18, 35, 41) quelles sommes peut-on obtenir ?

12. On définit ainsi la différence symétrique : $A\Delta B =_{d\acute{e}f} (A \cup B) - (A \cap B)$. Montrer que $A\Delta B = (A - B) \cup (B - A)$ et simplifer $(A\Delta B)\Delta(A \cap B)$

B. Familles d'ensembles

- Soit A l'ensemble {2,3,5,7} et B l'ensemble {1,3,7}. Construire P(A), P(B), P(A∪B), P(A)∪ P(B), P(A∩B), P(A)∩
 P(B). Généraliser les égalités trouvées à des ensembles quelconques.
- 2. On définit la suite A_i par $A_0 = \emptyset$ et $A_{i+1} = \mathcal{P}(A_i)$.
 - donner en extension les cinq premiers A_i .
 - pour des ensembles E quelconques, peut-on écrire et a-t-on $E \in E, E \subset E, E \in \mathcal{P}(E), E \subset \mathcal{P}(E)$?
 - dans le cas particulier des A_i , rediscuter de ces formules.
 - calculer $A_i \cap A_j$, $A_i \cup A_j$ pour $i, j \in N$
 - en déduire une structure de données et des algorithmes simples pour calculer union et intersection des A_i .
- 3. Une famille d'ensembles A est dit stable par intersection si $\forall E, F \in A$, $E \cap F \in A$. On notera $I(A) = \{C \cap D, C \in A, D \in A\}$.
 - a) Pour $E = \{a,b,c,d\}$ et $X = \{\{a,b,d\},\{a,b,c,d\},\{a,c,d\},\{b,c,d\}\}$ et $Y = \{\varnothing,\{a,b,c\},\{b\},\{c\}\}\}$, donner l'ensemble F des parties de E, une partition G non trivialede E, un recouvrement H de E qui ne soit pas une partition et calculer I(F),I(G),I(H).
 - b) Déterminer si F, G, I(G), H, X ou Y est stable par intersection.
 - c) Pour une famille quelconque A de parties d'un ensemble quelconque E, déterminer si A, I(A) ou P (A) est stable par intersection.
 - d) Pour une famille quelconque A de parties d'un ensemble quelconque E, déterminer si $A \subset I(A)$, si $I(A) \subset A$, si A = I(A), si I(A) = I(I(A)). Montrer que pour n assez grand, $I^{n+1}(A) = I^n(A)$.
 - e) Si une famille A de parties de E vérifie A = I(A), montrer qu'elle est stable par intersection.

Application

1. Présentation

On désire écrire une bibliothèque de fonctions (ou procédures) permettant d'utiliser des ensembles d'entiers, puis utiliser cette bibliothèque pour répondre à la question :

Combien de sommes différentes peut-on former en prenant k éléments (avec répétition possible) de l'ensemble d'entiers E ?

L'ensemble E et l'entier k sont donnés par l'utilisateur, l'algorithme fournit le nombre de sommes distinctes sans montrer comment les obtenir.

2. Structures de données

Pour écrire cette bibliothèque, il faut choisir une structure de donnée. Plusieurs possibilités sont offertes :

- a. un tableau d'entiers contenant un entier de l'ensemble dans chaque case, en acceptant que le même entier apparaisse plusieurs fois (bien définir alors la fonction cardinal et l'affichage).
- b. un tableau d'entiers contenant un entier de l'ensemble dans chaque case, en s'arrangeant pour que chaque entier n'apparaisse qu'une fois (bien définir alors la saisie et l'union).
- c. un tableau d'entiers contenant un entier de l'ensemble dans chaque case, maintenu trié, chaque élément n'apparaissant qu'une fois.
- d. une liste d'entiers sans ordre, avec répétition possible.
- e. une liste d'entiers sans ordre, sans répétition.
- f. une liste d'entiers maintenue triée.
- g. un tableau de booléen indicé par les entiers et indiquant si l'indice apartient ou pas à l'ensemble.
- h. une structure non présentée ici et que vous voudriez essayer.

3. Étude

• Vous devez étudier (sommairement) la complexité des fonctions de base (appartenance, union, intersection, différence) pour plusieurs implémentations discuter de la pertinence de ces implémentations.