

Rappels sur la théorie des ensembles

Module BD-Fichiers

(c) E. Desmontils, Dpt Informatique Faculté des sciences et des techniques de Nantes

Année 2004-2005

Définitions fondamentales

- Ensemble : collection non ordonnée d'objets différents.
 Soit X un ensemble et p un objet :
 - \star p ∈ X : signifie que l'objet p est un élément de l'ensemble X, ie p appartient à X
 - * p ∉ X : signifie que l'objet p n'est pas un élément de l'ensemble
 X, ie p n'appartient pas à X
- **№** {1,4} = {4,1}
 - * Les éléments peuvent être présentés dans un ordre arbitraire.
- Un ensemble ne peut pas contenir deux éléments égaux
 - * {1,4,1}
 Les éléments 1 et 1 ne sont pas distincts. Ils représentent le même élément.

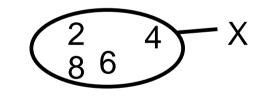
Définir et représenter un ensemble

Définir un ensemble

* Par extension, énumération exhaustive des éléments

$$\star X = \{2,4,6,8\}$$

- * Par caractérisation (compréhension, intension) :
- * $X = \{p \mid pair(p) \text{ et } 0$
- Représentation graphique d'un ensemble
 - * Diagram de Venn



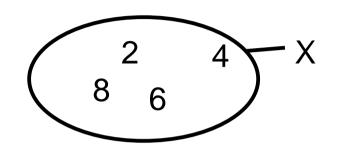
- Ensemble vide
 - * Ensemble ne contenant pas d'éléments
 - **★** {} = ∅
 - * Attention, $\{0\} \neq \{\}$

Égalité

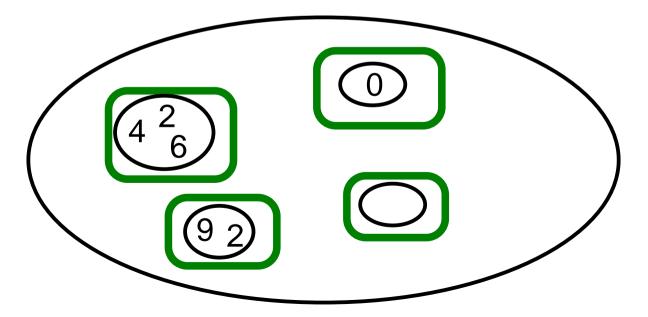
- Égalité de deux ensembles : deux ensembles X et Y sont égaux si et seulement si chaque élément de X est aussi un élément de Y ET que chaque élément de Y est aussi un élément de X
 - * X=Y
 - * $\forall x \in X$ alors $x \in Y$ et $\forall y \in Y$ alors $y \in X$

Cardinalité

- Cardinalité d'un ensemble :
 - * le nombre d'éléments de l'ensemble
- \sim Cardinalité(X) = Card(X) = |X| = 4

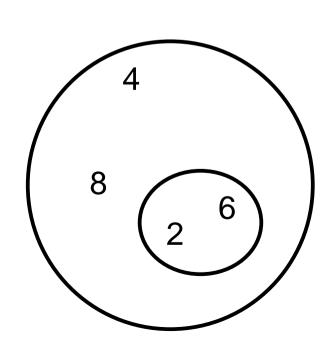


 $\sim \text{Card}(\{\{4,2,6\},\{0\},\{\},\{9,2\}\}) = 4$

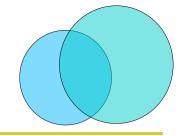


Sous-ensemble et inclusion

- - $\star Y \subseteq X$
 - * $Y \subseteq X$ et $Y \neq X \Leftrightarrow Y \subseteq X$
 - ★ Y est appelé aussi sous-ensemble propre de X
 - * $Y \subseteq X$ et $X \subseteq Y \Rightarrow X=Y$
 - * Réfléxivité : $\forall X, X \subseteq X$
 - * Anti-symétrie : $Y \subseteq X$ et $X \subseteq Y \Rightarrow X = Y$
 - * Transitivité : $Y \subseteq X \subseteq Z \Rightarrow Y \subseteq Z$
- * {2,6} \subset {4,6,8,2}
- $\aleph \ \forall \ X, \varnothing \subseteq X$

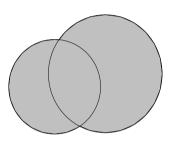


Opérations ensemblistes (1)



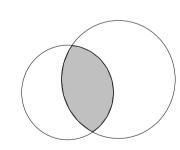
Union

- * $Z = X \cup Y$ ssi $Z = \{z \mid z \in X \lor z \in Y\}$
- * $\{2,4,6,8\} \cup \{1,3,5,7,9\} = \{1,2,3,4,5,6,7,8,9\}$
- * $X \cup \emptyset = X \cup \emptyset = X$

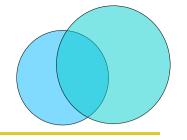


Intersection

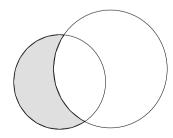
- * $Z = X \cap Y$ ssi $Z = \{z \mid z \in X \land z \in Y\}$
- * $\{2,4,6,8\} \cap \{1,2,3,4,5\} = \{2,4\}$
- * $X \cap \mathcal{O} = X \cap \mathcal{O} = \mathcal{O}$
- * Y et Y sont disjoints ssi $X \cap Y = \emptyset$
 - **★** {1,3,5,7,9} et {2,4,6,8} sont disjoints



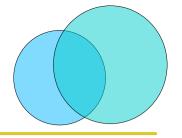
Opérations ensemblistes (2)



- **Ensemble complémentaire** : le complémentaire d'un sousensemble A d'un ensemble X est l'ensemble de tous les éléments qui ne sont pas dans A.
 - * $\stackrel{A}{\underset{X=}{=}} A^{c} = \overline{A} = \{x \mid x \in X \land x \notin A\} \text{ avec } A \subseteq X$
 - * $X=\{1,2,3,4,5,6,7,8,9\}; A=\{2,4,6,8\}$ $A^{c}=\{1,3,5,7,9\}$
 - * $X^c = \emptyset$; $\emptyset^c = X$; $A^{cc} = A$; $A^c \cap A = \emptyset$; $A^c \cup A = X$
- № Différence : X\Y sont les éléments de X qui n'appartiennent pas à Y
 - * $X \setminus Y = X Y = \{x \mid x \in X \land x \notin Y\}$
 - * $\{1,2,3,4,5,6,7,8,9\}\setminus\{1,2,3,5,7,9\}=\{4,6,8\}$

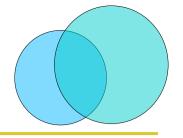


Opérations ensemblistes (3)



- - * $X \triangle Y = (X \setminus Y) \cup (Y \setminus X) = (X \cup Y) \setminus (X \cap Y)$
 - * $\{1,2,3,4,5,6\}$ \triangle $\{4,5,6,7,8,9\}$ = $\{1,2,3,7,8,9\}$
- № Produit cartésien (produit): X Y est l'ensemble des couples (paires ordonnées) dont le premier élément appartient à X et le second à Y.
 - * $X Y = \{ z=(x,y) \mid x \in X \land y \in Y \}$
- $X = \{1,2,6\}, Y = \{1,6\},\$ $X = \{(1,1), (1,6), (2,1), (2,6), (6,1), (6,2)\}$
 - * Attention $(1,6) \neq (6,1)$ et $(2,6) \neq (6,2)$

Opérations ensemblistes (4)



Ensemble des parties :

(X) est l'ensemble de tous les sous-ensembles de X

- * $\forall Y \subseteq X, Y \in (X)$
- * $X = \{1,3,2\}$ (X) = $\{\emptyset, \{1\}, \{2\}, \{3\}, \{1,3\}, \{2,3\}, \{1,2\}, \{1,2,3\}\}$

Quelques lois (1)

Lois de commutativité

$$\star X \cap Y = Y \cap X$$

$$\star X \cup Y = Y \cup X$$

Lois d'associativité

*
$$X \cap Y \cap Z = (X \cap Y) \cap Z = X \cap (Y \cap Z)$$

*
$$X \cup Y \cup Z = (X \cup Y) \cup Z = X \cup (Y \cup Z)$$

Lois de distributivités

*
$$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$$

*
$$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$$

$$|X| + |Y| = |X \cup Y| + |X \cap Y|$$

Quelques lois (2)

- Lois d'idempotence
 - $\star X \cap X = X$
 - $\star X \cup X = X$
- Lois d'absorption
 - * $X \cup (X \cap Y) = X$
 - * $X \cap (X \cup Y) = X$
- Lois de De Morgan
 - * Soient $Z \subseteq X$ et $Y \subseteq X$
 - $\star (Z \cap Y)^c = Z^c \cup Y^c$
 - $\star (Z \cup Y)^c = Z^c \cap Y^c$